• Title/Summary/Keyword: Switching power capacitors

Search Result 180, Processing Time 0.028 seconds

Study on the resonant HF DC/DC Converter for the weight reduction of the Auxiliary Power Supply of MAGLEV (자기부상열차 보조전원장치 경량화를 위한 공진형 HF DC/DC Converter 연구)

  • Lee, Kyoung-Bok;Lim, Ji-Young;Jo, Jeong-Min;Kim, Jin-Su;Han, Young-Jae;Choi, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1825-1831
    • /
    • 2011
  • One of the major trends in traction power electronics is increasing the switching frequencies. The advances in the frequency elevation have made it possible to reduce the total size and weight of the passive components such as capacitors, inductors and transformers in the DC/DC converter and hence to increase the power density. The traction dynamic performance is also improved. This document describes several aspects relating to the design of resonant DC/DC converter operating at high frequency(10KHz) and the converter topologies and the control method of MAGLEV, which result in soft switching, are discussed.

  • PDF

Operational Mode Analysis of the AT Flyback Multi-Resonant Converter (AT 플라이백 다중공진형 컨버터 동작모드 해석)

  • Park, Gwi-Cheol;Kim, Chang-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1250-1254
    • /
    • 2007
  • The multi-resonant(MR) converter has a characteristics that the parasitic components existing in the converter are absorbed into the resonant circuits. The designed MR converter could be got a high efficiency and a high power density because the switching power losses are reduced effectively due to resonant switching circuit. However, the high resonant voltage stress of switching power devices leads to the conduction loss. In this paper, it is proposed the novel alternated(AT) flyback multi-resonant converter to overcome such a drawback. The suggested converter dc input is divided by two series input filter capacitors. The resonant stress voltage is reduced to 2-3 times the input voltage without any complexity and it provides the various circuit schemes in lots of applications. The proposed flyback MR converter is verified through simulation and experiment.

Implementation of Voltage Sag/Swell Compensator using Direct Power Conversion (직접전력변환 방식을 이용한 전압 강하/상승 보상기의 구현)

  • Lee, Sang-Hoey;Cha, Han-Ju;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1544-1550
    • /
    • 2009
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is proposed. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy or compensating voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method that is commonly employed in the direct power conversion. Simulation and experimental results are shown to demonstrate the advantages of the new compensator and PWM strategy. A 220V, 3kVA single-phase compensator based on the digital signal processor controller is built and tested.

Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber (패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석)

  • Kim, Jung-Do;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.

New Voltage Sag/Swell Compensator Using Direct Power Conversion Method (직접전력변환 방식을 이용한 새로운 전압 sag/swell 보상기)

  • Cha, Han-Ju;Lee, Dae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.267-269
    • /
    • 2006
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is introduced. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc-link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy to compensate voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method commonly required in the direct power conversion. Simulation results are shown to demonstrate the advantages of the new compensator and PWM strategy.

  • PDF

Multilayer Power Delivery Network Design for Reduction of EMI and SSN in High-Speed Microprocessor System

  • Park, Seong-Geun;Kim, Ji-Seong;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2002
  • In this paper, a pre-layout design approach for high-speed microprocessor is proposed. For multilayer PCB stark up configuration as well as selection and placement of decoupling capacitors, an effective solution for reducing SSN and EMI is obtained by modeling and simulation of complete power distribution system. The system model includes VRM, decoupling capacitors, multiple power and ground planes for core voltage, vias, as well as microprocessor. Finally, the simulation results are verified by measurements data.

Implementation of Voltage Sag/Swell Compensator Using Direct Power Conversion Method (직접전력변환 방식을 이용한 전압 sag/swell 보상기의 구현)

  • Cha, Han-Ju;Lee, Dae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1014-1015
    • /
    • 2006
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is introduced. A new compensator consists of input/output filter, series transformer and direct at-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc-link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy to compensate voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method commonly required in the direct power conversion. Simulation results are shown to demonstrate the advantages of the new compensator and PWM strategy.

  • PDF

Failure Prediction Monitoring of DC Electrolytic Capacitors in Half-bridge Boost Converter (단상 하프-브리지 부스트 컨버터에서 DC 전해 커패시터의 고장예측 모니터링)

  • Seo, Jang-Soo;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • DC electrolytic capacitor is widely used in the power converter including PWM inverter, switching power supply and PFC Boost converter system because of its large capacitance, small size and low cost. In this paper, basic characteristics of DC electrolytic capacitor vs. frequency is presented and the real-time estimation scheme of ESR and capacitance based on the bandpass filtering is adopted to the single phase boost converter of uninterruptible power supply to diagnose its split dc-link capacitors. The feasibility of this real-time failure prediction monitoring system is verified by the computer simulation of the 5[kW] singe phase PFC half-bridge boost converter.