• Title/Summary/Keyword: Switching power

Search Result 4,309, Processing Time 0.029 seconds

Improving the Overall Efficiency for DC/DC Converter with LoV-HiC System

  • Han, Dong-Hwa;Lee, Young-Jin;Kwon, Wan-Sung;Bou-Rabee, Mohammed A.;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.418-428
    • /
    • 2012
  • It is very important to improve the overall efficiency of systems with a source of power that has low-voltage high-current terminal characteristics such as fuel cells. A resonant converter is required for high efficiency systems. However, the peak value of the switches current is large in a resonant converter. This peak current requires a large number of switches and results in system failures. In this paper, an analysis and experiments of a resonant isolation push-pull converter are performed. A switching loss analysis is performed in order to compare losses between a resonant push pull converter and a hard switching push-pull converter. Specially, the conduction loss is studied based on the ratio between the resonant frequency and the switching frequency. In addition, a method for improving the efficiency is implemented with conventional HF insolation converters.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Characteristic Analysis and Design of High Frequency Resonant Inverter(SEPP Type) using ZVS (ZVS를 이용한 고주파 공진 인버터(SEPP형)의 특성해석과 설계)

  • 민병재;노채균;김동희;김종해;문창수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.19-27
    • /
    • 1997
  • This paper has described about principle and form of proposed circuit made use of soft switching technology ZVS(Zero Voltage Switching) to reduce turn on and off loss at switching. Also, the analysis of the proposed circuit has described generally by using normalized parameter and operating characteristics have been evaluated as to switching frequency and parameters. Based on the characteristics value, a method of the circuit design is proposed. In addition, this paper proves the propriety of theoretical analysis in terms of the experimental waveforms. In the future, this proposed inverter shows that it can be practically used as power source system for induction cooker etc.

  • PDF

Pulse Density Modulated Zero Voltage Soft-Switching High-Frequency Inverter with Single Switch for Xenon Gas Dielectric Barrier Discharge Lamp Dimming

  • Sugimura, Hisayuki;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • This paper presents soft switching zero voltage switching high frequency inverter for rare gas fluorescent lamp using dielectric-barrier discharge phenomenon. The simple high-frequency inverter can completely achieve stable zero voltage soft switching (ZVS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZVS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this high frequency Inverter are illustrated as compared with computer simulation results and experimental ones. Its light dimming characteristics due to power regulation scheme are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proven from the practical point of view.

  • PDF

A study on Three-Phase AC-DC Boost Converter using A Soft-Switching for discontinuous Mode (소프트 스윗치를 이용한 불연속 모드 3상 AC-DC 부스터 컨버터에 관한 연구)

  • Chun, J.H.;Kwak, D.G.;Kim, C.S.;Suh, K.Y.;Kwon, S.K.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.188-190
    • /
    • 1995
  • This paper describes a soft switching using discontinuous inductor current. The soft switching snubber circuit provides ZCS and ZVS for main switch. For high power applications, the input ractifier is fed from a three-phase ac source. The Conventional switching method is hard switching technics, because of the device turn off is ocurred in maximum reactor current. In this time, switching losses are maximised by the hard switching. In generally, soft switching technique has been adjusted with the snubber condenser in order to compensates for this losses. So, it was compared hard switching with soft switching which has proposed in this paper for switching losses, distortion factor by the simulation.

  • PDF

A Study on Voltage and Switching Angle for Maximum Torque/Efficiency and Minimum Torque Ripple of SRM by using SIMULINK$^\textregistered$

  • Cha, Hyun-Rok;Seo, Jong-Yun;Yang, Hyong-yeol;Kim, Kwang-Heon;Lim, Young-Cheol;Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.56-64
    • /
    • 2001
  • This paper presents the switching angle and voltage for maximizing the torque or efficiency and minimizing torque ripple of an 8/6, SRM. The approximate analysis and computer simulation determine the switching angle and voltage by using SIMULINK$^\textregistered$. This is performed as a function of the speed and torque required by the load. From the results, new three facts can be known: First, the maximum torque depends on voltage and speed depends on switching angle. The others, the maximum efficiency and minimum torque ripple relay on switching angle. We control the switching angle and voltage of and asymmetrical inverter for the SRM with one-chip micro controller.

  • PDF

A ZV-ZCT Boost Converter using an Auxiliary Resonant Circuit (보조 공진회로를 갖는 영전압-영전류 천이 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jun-Gu;Ryu, Dong-Kyun;Song, In-Beom;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.298-305
    • /
    • 2012
  • This paper proposes a soft switching boost converter with an auxiliary resonant circuit. The auxiliary resonant circuit is added to a general boost converter and that is composed of one switch, one diode, one inductor and two capacitors. The resonant network helps the main switch to operate with a zero voltage switching(ZVS) and auxiliary switch also operates under the zero voltage and zero current conditions. The soft switching range is extended by the auxiliary switch and it is possible to control the proposed converter with a pulse width modulation(PWM). The ZVS and ZCS techniques make switching losses decreased and efficiency of the system improved. A theoretical analysis is verified through the simulation and experiment.

DC-DC Boost Converter using Offset-Controlled Zero Current Sensor for Low Loss Thermoelectric Energy Harvesting Circuit (저 손실 열전변환 하베스팅을 위해 제로전류센서의 오프셋을 조절하는 부스트 컨버터)

  • Joo, Sunghwan;Kim, Kiryong;Jung, Dong-Hoon;Jung, Seong-Ook
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.373-377
    • /
    • 2016
  • This paper presents a low power boost converter using offset controlled Zero Current Sensor (ZCS) control for thermoelectric energy harvesting.[1] [5] Offset controlled ZCS uses adjustable pre-offset that is controled by 6bit code each connected gate of NMOS for switching. Offset controlled ZCS demonstrates an efficiency that is higher than using analog comparator ZCS and that is smaller area than using delay line ZCS. Experimentally, the offset controlled ZCS system consumes 10 times less power than analog comparator ZCS based system at similar performance.

An Improved SPWM Strategy to Reduce Switching in Cascaded Multilevel Inverters

  • Dong, Xiucheng;Yu, Xiaomei;Yuan, Zhiwen;Xia, Yankun;Li, Yu
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.490-497
    • /
    • 2016
  • The analysis of the switch status of each unit module of a cascaded multi-level inverter reveals that the working condition of the switch of a chopper arm causes unnecessary switching under the conventional unipolar sinusoidal pulse width modulation (SPWM). With an increase in the number of cascaded multilevel inverters, the superposition of unnecessary switching gradually occurs. In this work, we propose an improved SPWM strategy to reduce switching in cascaded multilevel inverters. Specifically, we analyze the switch state of the switch tube of a chopper arm of an H-bridge unit. The redundant switch is then removed, thereby reducing the switching frequency. Unlike the conventional unipolar SPWM technique, the improved SPWM method greatly reduces switching without altering the output quality of inverters. The conventional unipolar SPWM technique and the proposed method are applied to a five-level inverter. Simulation results show the superiority of the proposed strategy. Finally, a prototype is built in the laboratory. Experimental results verify the correctness of the proposed modulation strategy.