• Title/Summary/Keyword: Switching Transistor

Search Result 261, Processing Time 0.027 seconds

Loss Analyses of Soft Switching Techniques for Two-transistor Forward Converter (Two-transistor 포워드 컨버터에서 소프트 스위칭 기법의 손실 분석)

  • 김만고
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.453-459
    • /
    • 2001
  • In this paper, the loss analyses of two soft switching techniques for two-transistor forward converter are performed. The sums of snubber conduction and capacitive turn-on losses for two transistors are calculated to compare the losses of the two techniques. While the conventional soft switching technique shows the loss difference between two transistors, the proposed soft switching technique shows equal as well as lower losses In two transistors. Thus, it can be said that even thermal distribution and higher reliability can be obtained by the proposed soft switching technique.

  • PDF

An Improved Soft Switching Two-transistor Forward Converter (개선된 소프트 스위칭 Two-transistor forward converter)

  • Kim, Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.137-140
    • /
    • 2000
  • This paper proposes an improved soft switching two-transistor forward converter which uses a novel lossless snubber circuit to effectively control the turn-off dv/dt rate of the main transistors. In the proposed soft switching implementation the turn-off voltage traces across the main two transistors are almost the same contributing to reduce the total capacitive turn-on loss and the snubber current is divided into the two transistors resulting in distributed thermal stresses

  • PDF

Switching Characteristics of Transistor & IC-Version of Oscillator (트랜지스터의 스위칭 특성과 IC화 할 수 있는 발진회로)

  • 김경희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.86-92
    • /
    • 1980
  • This paper dealt with an oscillator which can be integrated and 1 he switching characteristics of the transistor as a component of multistage switching circuits . The switching characteristics were analyzed by utilizing the base voletare and the charactistics of the minit step function. Taking the storage time of the transistor into consideration, the transistor is considered as a time delay device, and an integrable time delay circuit an osicillator are realized.

  • PDF

A Study on the ZVZCS Interleaving Two-Transistor Forward Converter using Phase Shift Control (위상이동 방식을 적용한 ZVZCS Interleaving Two-Transistor Forward 컨버터에 관한 연구)

  • Han, Kyung-Tae;Kim, Yong;Bae, Jin-Yong;Lee, Kyu-Hoon;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.276-280
    • /
    • 2003
  • This paper presents a zero voltage and zero current switching (ZVZCS) interleaving two-transistor forward converter for high input voltage and high power application. A phase shift has a disadvantage that a circulating current and RMS current stress, conduction losses of transformer and switching devices increases. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved interleaving two-transistor forward Zero Voltage and Zero Current Switching (ZVZCS) dc/dc converter using a tapped inductor a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 1.8kW, 5kHz experimental prototype.

  • PDF

Two-transistor 포워드 컨버터에서 소프트 스위칭 기법의 손실 계산

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.698-701
    • /
    • 2001
  • Loss analyses of two soft switching techniques for two-transistor forward converters are presented. The sums of snubber conduction and capacitive turn-on losses for two transistors are calculated to compare the losses of two techniques. While the conventional soft switching technique shows the loss difference between two transistors, proposed soft switching technique shows equal as well as lower loss in two transistors.

  • PDF

Improved Circuit Model for Simulating IGBT Switching Transients in VSCs

  • Haleem, Naushath Mohamed;Rajapakse, Athula D.;Gole, Aniruddha M.
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1901-1911
    • /
    • 2018
  • This study presents a circuit model for simulating the switching transients of insulated-gate bipolar transistors (IGBTs) with inductive load switching. The modeling approach used in this study considers the behavior of IGBTs and freewheeling diodes during the transient process and ignores the complex semiconductor physics-based relationships and parameters. The proposed circuit model can accurately simulate the switching behavior due to the detailed consideration of device-circuit interactions and the nonlinear nature of model parameters, such as internal capacitances. The developed model is incorporated in an IGBT loss calculation module of an electromagnetic transient simulation program to enable the estimation of switching losses in voltage source converters embedded in large power systems.

Negative Differential Resistance Devices with Ultra-High Peak-to-Valley Current Ratio and Its Multiple Switching Characteristics

  • Shin, Sunhae;Kang, In Man;Kim, Kyung Rok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.546-550
    • /
    • 2013
  • We propose a novel negative differential resistance (NDR) device with ultra-high peak-to-valley current ratio (PVCR) by combining pn junction diode with depletion mode nanowire (NW) transistor, which suppress the valley current with transistor off-leakage level. Band-to-band tunneling (BTBT) Esaki diode with degenerately doped pn junction can provide multiple switching behavior having multi-peak and valley currents. These multiple NDR characteristics can be controlled by doping concentration of tunnel diode and threshold voltage of NW transistor. By designing our NDR device, PVCR can be over $10^4$ at low operation voltage of 0.5 V in a single peak and valley current.

Effects of Fast Neutron Irradiation on Switching of Silicon Bipolar Junction Transistor

  • Sung Ho Ahn;Gwang Min Sun
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2023
  • Background: When bipolar junction transistors (BJTs) are used as switches, their switching characteristics can be deteriorated because the recombination time of the minority carriers is long during turn-off transient. When BJTs operate as low frequency switches, the power dissipation in the on-state is large. However, when BJTs operate as high frequency switches, the power dissipation during switching transients increases rapidly. Materials and Methods: When silicon (Si) BJTs are irradiated by fast neutrons, defects occur in the Si bulk, shortening the lifetime of the minority carriers. Fast neutron irradiation mainly creates displacement damage in the Si bulk rather than a total ionization dose effect. Defects caused by fast neutron irradiation shorten the lifetime of minority carriers of BJTs. Furthermore, these defects change the switching characteristics of BJTs. Results and Discussion: In this study, experimental results on the switching characteristics of a pnp Si BJT before and after fast neutron irradiation are presented. The results show that the switching characteristics are improved by fast neutron irradiation, but power dissipation in the on-state is large when the fast neutrons are irradiated excessively. Conclusion: The switching characteristics of a pnp Si BJT were improved by fast neutron irradiation.

Improvement of The Saturation Voltage Characteristics of BJT Using Folded Back Electrode (Folded Back Electrode를 이용한 BJT의 포화전압특성 개선)

  • 김현식;손원소;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.15-21
    • /
    • 2004
  • In this paper a new structure of BJT is proposed to improve the saturation voltage characteristics so that it can be used to the low power switching devices. In the case of the conventional finger transistor(FT), the saturation voltage is so high that it dose not satisfy the requirements for the low power device. So the other multi base island transistor(MBIT) is suggested and its saturation voltage is so low in the region of low current that it satisfy the requirement for the low power switching devices, but in region of the high current the saturation voltage tends to increase so that it does not satisfy the requirements for the low power switching devices. So in this paper a new structure of folded back electrode transistor(FBET) is proposed and the characteristics is investigated. When the new structure is applied the emitter area is increased by 35 % so the saturation voltage is reduced by 30 % at the low current region and the contact area is increased by 92 % so the saturation voltage is reduced by totally f % at the high current region with the reduction of 30 % by the increase of the emitter area and the reduction of 7 % by the increase of the emitter contact area.

Design of Impulse Generator using Transistor (트랜지스터를 이용한 임펄스 발생기 설계)

  • 이승식;김재영;이형수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1121-1126
    • /
    • 2003
  • In this paper we show impulse generator which is important component in UWB communication. There is two steps to generate monocycle impulse. In first step, Gaussian pulse was made by operation of transistor switching and operation time of transistor switching. The second step the high pass filter change from Gaussian to Monocycle impulse. The result of this impulse generator is impulse whose pulse width is 0,9 ns in time domain and amplitude is +/-250 ㎷.