• Title/Summary/Keyword: Switching Surface

검색결과 327건 처리시간 0.033초

Time-varying sliding surface design using eigenvalue locus for high-order variable structure control systems (고차 가변구조 제어 시스템에서의 고유치 궤적을 이용한 시변 스위칭 평면 설계)

  • 이영성;김가규;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.253-256
    • /
    • 1996
  • In this paper, A new time-varying sliding surface design using eigenvalue locus is proposed to achieve fast and robust in a class of high-order uncertain dynamic system. A moving sliding surface(MSS) was proposed earlier for the second-order variable structure control systems(VSCS). This methodology led to fast and robust control responses of the second-order VSCS. However, the moving algorithm of the MSS was too complicated to be employed the high-order VSCS. To resolve this problem, we propose a new moving algorithm that switching surface moves such that the eigenvalues of equivalent system in the sliding mode have a predetermined locus. Using the proposed surface fast and robust behaviors are accomplished. The problem of chattering can be eliminated by using a boundary layer of switching surface. The efficiency of proposed algorithm is illustrated by an application to four-order workbench.

  • PDF

Design of Integrated-Mirror Etalons for Surface-Emitting Lasers and Photonic Switching (광스위칭과 표면 발진 레이저를 위한 집적 거울 Etalon의 설계)

  • 정종술;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • 제29A권3호
    • /
    • pp.41-46
    • /
    • 1992
  • In this paper we report how to design integrated-mirror etalons for surface-emitting lasers and photonic switching without time-consuming numerical calculation. It consists of the following two-step process (step 1) find the minimum reflectance to achieve the maximum allowable linewidth. (step 2) find the number of the quarter-wave layers in each mirror to realize the reflectance given by step 1. The condition for maximum transmission in an integrated- mirror etalon is also derived. Under this condition we can achieve the required linewidth with the minimum number of quarterwave layers.

  • PDF

Formation of Switching Zones in an AFM Tip/Ferroelectric Thin Film/BE System (AFM팁/강유전박막/전극 시스템에서의 스위칭 영역의 형성)

  • Kim, Sang-Joo;Shin, Joon-Ho;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제27권6호
    • /
    • pp.849-856
    • /
    • 2003
  • A three-dimensional constitutive model for polarization switching in ferroelectric materials is used to predict the formation of switching zones in an atomic force microscopy(AFM) tip/ferroelectric thin film/bottom electrode system via finite element simulation. Initially the ferrolectric film is poled upward and the bottom electrode is grounded. A strong dc field is imposed on a fixed point of the top surface of the film through the AFM tip. A small switching zone with downward polarization is nucleated and grows with time. It is found that initially the shape of the switched zone is that of a bulgy dagger, but later turn to the shape of a reversed cup with the lower part wider than the upper part. It can also be concluded that the size of switching zones increases with the period of applied electric potential. The present results are qualitatively consistent with experimental observations.

Design of the output feedback variable structure control system for multivariable system (다변수 계통에 대한 출력궤환 가벼구조 제어계에 관한 연구)

  • 이기상;조동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.197-202
    • /
    • 1991
  • Recently, an output feedback variable structure control scheme(OFVSCS) is proposed to remove the assumption of full state availability and to make the application of VSC scheme to the high order systems with unmeasurable state variables possible. In this paper, a design method of an output feedback variable structure control system (IOFVSCS) that guarantees the invariance of the sliding mode against process parameter variation and external disturbance is proposed. The IOFVSCS is composed of two components; dynamic switching surface driven by measured I/0 informations and switching control input generator driven by switching surface information and measured output, where the two components are constructed by adopting unknown vector modelling approach. The invariance condition for the IOFVSCS is proved to be the same as that of the conventional VSCS. Simulation results show that the IOFVSCS can be designed to have robust properties better than that of the conventional VSCS in spite that the IOFVSCS is driven by small amount of measured information.

  • PDF

Cell Gap Dependent Electrode-Optic Characteristics of Fringe-Field Switching Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성의 음인 액정을 이용한 Fringe-Field Switching mode의 cell gap 변화에 따른 전기광학 특성)

  • 정송희;김향율;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제16권10호
    • /
    • pp.914-922
    • /
    • 2003
  • The FFS (fringe-field switching) mode was known to exhibit both a wide viewing angle and high transmittance, especially when using a liquid crystal with negative dielectric anisotropy. We have studied cell gap-dependent electrode-optic characteristics of the FFS mode using the LC with negative dielectric anisotropy. In case of a small cell gap of 2 ${\mu}$m, the transmittance at the center of pixel and common electrodes is relatively low because effect of surface anchoring that holds the LC to the initial state is larger than that in a large cell gap of 4 .urn such that the LCs in those regions cannot rotate enough. However, in case of a large cell gap of 4 .urn, the effect of surface anchoring becomes relatively small so that the LCs at the center of pixel and common electrode can be twisted enough by applied voltage, giving rise to high transmittance. Therefore, we can conclude that the light efficiency is dependent on the cell gap.

Study on Electro-optic Characteristics of Fringe-field Switching Twisted Nematic Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 Fringe-field Switching Twisted Hematic 모드의 전기광학 특성 연구)

  • 송일섭;신성식;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제17권5호
    • /
    • pp.530-535
    • /
    • 2004
  • We have studied 90$^{\circ}$ twisted nematic mode switching by fringe electric field(F-TN mode) using a liquid crystal (LC) with negative dielectric anisotropy. In the device, two polarizers are parallel each other, electrodes exist only on bottom substrate, and one of rubbing direction is coincident with polarizer axis. Therefore, the cell shows a black state before a voltage is applied. With a bias voltage generating fringe-electric field, the LC twists perpendicular to fringe electric field such that the LCs are almost homogeneously aligned except near the bottom surface since the negative type of the LC is used. Consequently, the new device exhibits much wider viewing angle than that of the conventional TN mode due to in-plane switching and relatively high transmittance since the LC director above whole electrode area aligns parallel to the polarizer axis.

Sliding Mode Control with Fixed Switching Frequency for Four-wire Shunt Active Filter

  • Hamoudi, Farid;Chaghi, A. Aziz;Amimeur, Hocine;Merabet, El Kheir
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.647-657
    • /
    • 2011
  • The present paper proposes a sliding mode control with fixed switching frequency for three-phase three-leg voltage source inverter based four-wire shunt active power filter. The aim is to improve phase current waveform, neutral current mitigation, and reactive power compensation in electric power distribution system. The performed sliding mode for active filter current control is formulated using elementary differential geometry. The discrete control vector is deduced from the sliding surface accessibility using the Lyapunov stability. The problem of the switching frequency is addressed by considering hysteresis comparators for the switched signals generation. Through this method, a variable hysteresis band has been established as a function of the sliding mode equivalent control and a predefined switching frequency in order to keep this band constant. The proposed control has been verified with computer simulation which showed satisfactory results.

Variable Structure Control Design Based on Eigenvalues Assignment of Sliding Mode (슬라이딩 모드 고유치 설정에 기반을 둔 가변구조 제어 설계)

  • Hong, Yeon-Chan;Lee, Tae-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권6호
    • /
    • pp.2207-2213
    • /
    • 2010
  • A new scheme for variable structure control design which is based on eigenvalues assignment of sliding mode is developed. In conventional methods, generally, specific type of system matrix like canonical or regular form is required to construct a switching surface. Furthermore, the methods are not explicit. The new method in this paper solved the problems. No special type of system matrix is required and very explicit. It is shown that the switching surface can be constructed and determined uniquely without any dependency on the system form. The proposed method is based on the fact that the dynamics of sliding mode is determined by system zeros. Finally, a numerical example is given to verify the validity of the results studied in this paper.

Study of the optical switching properties in waveguide type Au/$SiO_2$ nanocomposite film using prism coupler (프리즘 커플러를 이용한 도파로형 Au/$SiO_2$ 나노 혼합박막의 광 스위칭 특성 연구)

  • Cho, Sung-Hun;Lee, Soon-Il;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.76-76
    • /
    • 2008
  • The resonance properties due to the surface plasmon(SP) excitation of metal nanoparticles make the nanocomposite films promising for various applications such as optical switching devices. In spite of the well-known ultra-sensitive operation of optical switches based on a guided wave, the application of nanocomposite film(NC) has inherent limitation originating from the excessive optical loss related with the surface plasmon resonance(SPR). In this study, we addressed this problem and present the experimental and theoretical analysis on the pump-probe optical switching in prism-coupled Au(1 vol.%):$SiO_2$ nanocomposite waveguide film. The guided mode was successfully generated using a near infrared probe beam of 1550 nm and modulated with an external pump beam of 532 nm close to the SPR wavelength. We extend our approach to ultra-fast operation using a pulsed laser with 5 ns pulse width. To improve the switching speed through the reduction in thermal loading effect accompanied by the resonant absorption of pump beam light, we adopted a metallic film as a coupling layer instead of low-index dielectric layer between the high-index SF10 prism and NC slab waveguide. We observed great enhancement in switching speed for the case of using metallic coupling layer, and founded a distinct difference in origin of optical nonlinearities induced during switching operation using cw and ns laser.

  • PDF

Electric-field Assisted Photochemical Metal Organic Deposition for Forming-less Resistive Switching Device (전기장 광화학 증착법에 의한 직접패턴 비정질 FeOx 박막의 제조 및 저항변화 특성)

  • Kim, Su-Min;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제27권4호
    • /
    • pp.77-81
    • /
    • 2020
  • Resistive RAM (ReRAM) is a strong candidate for the next-generation nonvolatile memories which use the resistive switching characteristic of transition metal oxides. The resistive switching behaviors originate from the redistribution of oxygen vacancies inside of the oxide film by applied programming voltage. Therefore, controlling the oxygen vacancy inside transition metal oxide film is most important to obtain and control the resistive switching characteristic. In this study, we introduced an applying electric field into photochemical metal-organic deposition (PMOD) process to control the oxidation state of metal oxide thin film during the photochemical reaction by UV exposure. As a result, the surface oxidation state of FeOx film could be successfully controlled by the electric field-assisted PMOD (EFAPMOD), and the controlled oxidation states were confirmed by x-ray photoelectron spectroscopy (XPS) I-V characteristic. And the resistive switching characteristics with the oxidation-state of the surface region could be controlled effectively by adjusting an electric field during EFAPMOD process.