• 제목/요약/키워드: Switching Modulation

검색결과 725건 처리시간 0.026초

Cascaded H-bridge PWM 멀티레벨인버터의 스위칭 손실 저감을 위한 효율적인 스위칭 패턴 (Efficient Switching Pattern to Decrease Switching Losses in Cascaded H-bridge PWM Multilevel Inverter)

  • 정보창;김선필;김광수;박성준;강필순
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.502-509
    • /
    • 2013
  • It presents an efficient switching pattern, which expects a reduction of switching losses in a cascaded H-bridge PWM multilevel inverter. By the proposed switching scheme, the lower H-bridge module operates at low frequency of 60[Hz] because it assigns to transfer most load power. The upper H-bridge module operates at high frequency of PWM switching to improve THD of output voltage. The proposed switching pattern applies to cascaded H-bridge multilevel inverter with PD, APOD, bipolar, and unipolar switching methods. By computer-aided simulations, we verify the validity of the proposed switching scheme. Finally, we prove that the proposed PD and APOD switching patterns are better than those of the conventional one in efficiency.

A Novel Analytical Method for Selective Harmonic Elimination Problem in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.914-922
    • /
    • 2017
  • Multilevel converters have attracted a lot of attention in recent years. The efficiency parameters of a multilevel converter such as the switching losses and total harmonic distortion (THD) mainly depend on the modulation strategy used to control the converter. Among all of the modulation techniques, the selective harmonic elimination (SHE) method is particularly suitable for high-power applications due to its low switching frequency and high quality output voltage. This paper proposes a new expression for the SHE problem in five-level converters. Based on this new expression, a simple analytical method is introduced to determine the feasible modulation index intervals and to calculate the exact value of the switching angles. For each selected harmonic, this method presents three-level or five-level waveforms according to the value of the modulation index. Furthermore, a flowchart is proposed for the real-time implementation of this analytical method, which can be performed by a simple processor and without the need of any lookup table. The performance of the proposed algorithm is evaluated with several simulation and experimental results for a single phase five-level diode-clamped inverter.

비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터 (High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation)

  • 양민권;최우영
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

Synchronous Periodic Frequency Modulation Based on Interleaving Technique to Reduce PWM Vibration Noise

  • Zhang, Wentao;Xu, Yongxiang;Ren, Jingwei;Su, Jianyong;Zou, Jibin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1515-1526
    • /
    • 2019
  • Ear-piercing high-frequency noise from electromagnetic vibrations in motors has become unacceptable in sensitive environments, due to the application of pulse width modulation (PWM) and in consideration of switching losses. This paper proposed a synchronous periodic frequency modulation (SPFM) method based on the interleaving technique for paralleled three-phase voltage source inverters (VSIs) to eliminate PWM vibration noise. The proposed SPFM technique is able to effectively remove unpleasant high-frequency vibration noise as well as acoustic noise more effectively than the conventional periodic carrier frequency modulation (PCFM) and interleaving technique. It completely eliminates the vibration noise near odd-order carrier frequencies and reduces the PWM vibration noise near even-order carrier frequencies depending on the switching frequency variation range. Furthermore, the SPFM method is simple to implement and does not employ additional circuits in the drive system. Finally, the effectiveness of the proposed method has been confirmed by detailed experimental results.

Electro-optical devices from polymer-stabilized liquid crystals with molecular shape polarity

  • Kim, Sang-Hwa;Chien, Liang Chy;Komitov, Lachezar
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.839-842
    • /
    • 2004
  • We present a fast-switching electro-optical device based on flexoelectro-optic effect in short pitch cholesterics oriented in uniform lying helix texture. The device has two operating modes: amplitude and phase modulation mode. The amplitude modulation mode is a fast in-plane switching of the device optic axis that enables to achieve a high percent of modulation of the transmitted light intensity whereas the phase mode gives a continuous change of the refractive index and thus of the phase shift of the transmitted light. By using a small concentration of diacrylate monomer and selecting the illumination conditions we have been able to create a inhomogeneous polymeric network mostly localized at both substrate surfaces and stabilize the two switching modes.

  • PDF

A Study on the Design of a Pulse-Width Modulation DC/DC Power Converter

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.201-205
    • /
    • 2010
  • DC/DC Switching power converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. A switching converter utilizes one or more energy storage elements such as capacitors, or transformers to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter studied here consists of a power metal-oxide semiconductor field effect transistor switch, an inductor, a capacitor, a diode, and a pulse-width modulation circuit with oscillator, amplifier, and comparator. A buck converter containing a switched-mode power supply is also studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by simulation program with integrated circuit emphasis (SPICE). Furthermore, power efficiency was analyzed based on the specifications of each component.

PDM ZCS Resonant High Frequency Inverter for Induction Heated Roller

  • Kang, Shin-Chul
    • Journal of information and communication convergence engineering
    • /
    • 제6권3호
    • /
    • pp.301-304
    • /
    • 2008
  • This paper presents a lossless inductor snubber-assisted series resonant high frequency inverter using the trench gate IGBTs for the electromagnetic induction eddy current-heated fixing roller in copy and printing machines in a new generation. This soft switching high-frequency inverter can completely achieve zero current soft switching (ZCS) commutation mode transitions and wide power regulation under its constant frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally presented for a constant frequency PDM strategy under a ZCS operation, together with its output power regulation characteristics-based on the pulse density modulation. The effectiveness of this soft switching high-frequency inverter is confirmed for the fixing equipment with the induction-heated fixing roller.

Study on Hybrid PWM Method under Low Switching Frequency

  • Kekang, Wei;Zheng, Trillion Q.;Wang, Ran;Wang, Chenchen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.64-69
    • /
    • 2012
  • This paper presents a hybrid pulse width modulation (PWM) method under low switching frequency conditions based on space vector PWM (SVPWM) and selective harmonic eliminated PWM (SHEPWM), which use asynchronous carrier modulation SVPWM at low frequency, and SHEPWM at high frequency, a square wave after rated conditions. A transitive strategy is proposed to realize a smooth transition of individual modes including SVPWM, SHEPWM and square waves. Experimental results confirm this hybrid modulation method and their transition are reasonable and proper.

Maximum Boost Space Vector Pulse-Width Modulation Strategy of Z-Source Inverters

  • Kim, Seong Hwan;Park, Jang Hyun
    • 전기전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.73-79
    • /
    • 2015
  • In this paper, maximum boost space vector pulse-width modulation(MBSVPWM) strategy of Z-Source Inverters(ZSIs) is proposed. Conventional space vector pulse-width modulation(SVPWM) method of Voltage Source Inverters(VSIs) is modified to produce unique PWM patterns that realize the maximum boost control of ZSIs. This proposed method minimizes the switching power losses of ZSIs by reducing the numbers of the shoot-through states. Moreover, some switches keep ON state and the switching transitions do not occur during the specific sectors. An experimental system has been built and tested to verify the effectiveness of the proposed strategy.

Investigation of Capacitor Voltage Regulation in Modular Multilevel Converters with Staircase Modulation

  • Shen, Ke;Wang, Jianze;Zhao, Dan;Ban, Mingfei;Ji, Yanchao;Cai, Xingguo
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.282-291
    • /
    • 2014
  • This paper presents a detailed theoretical analysis and performance assessment of the capacitor voltage balancing strategies for staircase modulated modular multilevel converters (MMC) in terms of the algorithm structures, voltage balancing effect, and switching frequency. A constant-frequency redundancy selection (CFRS) method with minimal switching loss is proposed and the function realization of specific modules of the algorithm is given. This method is simple and efficient in both switching frequency and regulation capacity. Laboratory results show very good agreement with the theoretical analysis and numerical simulations.