• Title/Summary/Keyword: Switching & Conduction loss

Search Result 186, Processing Time 0.03 seconds

Low on Resistance Characteristic with 2500V IGBTs (낮은 온-저항 특성을 갖는 2500V급 IGBTs)

  • Shin, Samuell;Son, Jung-Man;Ha, Ka-San;Won, Jong-Il;Jung, Jun-Mo;Koo, Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.563-564
    • /
    • 2008
  • This paper presents a new Insulated Gate Bipolar Transistor(IGBT) for power switching device based on Non Punch Through(NPT) IGBT structure. The proposed structure has adding N+ beside the P-base region of the conventional IGBT structure. The proposed device has faster turn-off time and lower forward conduction loss than the conventional IGBT structure.

  • PDF

High Efficiency Buck-Converter with Short Circuit Protection

  • Cho, Han-Hee;Park, Kyeong-Hyeon;Cho, Sang-Woon;Koo, Yong-Seo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.425-429
    • /
    • 2014
  • This paper proposes a DC-DC Buck-Converter with DT-CMOS (Dynamic Threshold-voltage MOSFET) Switch. The proposed circuit was evaluated and compared with a CMOS switch by both the circuit and device simulations. The DT-CMOS switch reduced the output ripple and the conduction loss through a low on-resistance. Overall, the proposed circuit showed excellent performance efficiency compared to the converter with conventional CMOS switch. The proposed circuit has switching frequency of 1.2MHz, 3.3V input voltage, 2.5V output voltage, and maximum current of 100mA. In addition, this paper proposes a SCP (Short Circuit Protection) circuit to ensure reliability.

A High Efficiency Single-Stage PFC Flyback for PDP Sustaining Power Module (PDP 유지 전원단을 위한 고효율 Single-stage PFC Flyback Converter)

  • Yoo Kwang-Min;Lim Sung-Kyoo;Lee Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.34-38
    • /
    • 2006
  • A low cost PDP sustain power supply is proposed based on flyback topology. By using Boundary Conduction Method(BCM) to control input current regulation, DCM condition can be met under all load conditions. Another feature of the proposed method is that a excessive voltage stress due to the link voltage increase can be suppressed by removing link capacitor and suggest new 'Level-shifting switch driver'. this new gate driver is improved 66% of efficiency than switching loss of a existed push-pull amplifier. The proposed converter is tested with a 400W(200V-2A output) prototype circuit.

  • PDF

Alternately Zero Voltage Switched Multi Resonant Converter Topology (교번으로 영전압 스위칭 되는 다중공진형 컨버터 토폴로지)

  • Kim Chang-Sun;Park Hyo-Sik;Oh Yong-Seung;Kim Hee-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.360-363
    • /
    • 2002
  • In the resonant converters which can provide high efficiency and high power density, the resonant voltage stress is about $4\~5$ times the input voltage. It needs the power switch with high ratings. This is a reason why the conduction loss is increased. In this paper, it proposes the alternately zero voltage switched forward, flyback multi resonant converter topology for reducing the voltage stress using alternately zero voltage switching technique. And the proposed AT forward MRC Is experimentally considered about the loop gain with HP4194A network analyzer

  • PDF

2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor (결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터)

  • Chae, Jun-Young;Jeong, Seung-Yong;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.

Primary Side Constant Power Control Scheme for LED Drivers Compatible with TRIAC Dimmers

  • Zhang, Junming;Jiang, Ting;Xu, Lianghui;Wu, Xinke
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.609-618
    • /
    • 2013
  • This paper proposes a primary side constant power control scheme for TRIAC dimmer compatible LED drivers. The LED driver is a Flyback converter operated in boundary conduction mode (BCM) to minimize the switching loss. With the proposed control scheme, the input power of the Flyback converter can be controlled by the TRIAC dimming angle, which is not affected by AC input voltage variations. Since the output voltage is almost constant for LED loads, the output current can be changed by controlling the input power with a given conversion efficiency. The isolated feedback circuit is eliminated with the proposed primary side control scheme, which dramatically simplifies the whole circuit. In addition, the input current automatically follows the input voltage due to the BCM operation, and the resistive input characteristic can be achieved which is attractive for TRIAC dimming applications. Experimental results from a 15W prototype verify the theoretical analysis.

Novel Flyback ZVS Multi Resonant Converter (새로운 플라이백 영전압 스위칭 다중공진형 컨버터)

  • Kim, Ki-Young;Youn, Dae-Young;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1065-1066
    • /
    • 2006
  • The multi-resonant converter minimizes the parasitic oscillations using the resonant tank circuit absorbed parasitic reactances in a converter. So the converter can be operated at a high frequency and it provides a high efficiency because the switching power losses are reduced effectively. However, the high resonant voltage stress of semiconductors leads to the conduction loss. In this paper, it is proposed the novel flyback multi-resonant converter. The converter input is divided by two series input capacitors. And also the resonant stress is reduced to 2-3 times input voltage without any complexity and it provides the various circuit schemes in lots of applications. The proposed converters are verified through simulation and experiment.

  • PDF

A High Efficiency Single-Stage PFC Flyback Converter for PDP Sustaining Power Module (PDP 유지 전원단을 위한 고효율 Single-stage PFC Flyback Converter)

  • Yoo, Kwang-Min;Lim, Sung-Kyoo;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.11-16
    • /
    • 2006
  • A low cost PDP sustain power supply is proposed based on flyback topology. By using Boundary Conduction Method(BCM) to control input current regulation, DCM condition can be met under all load conditions. Another feature of the proposed method is that a excessive voltage stress due to the link voltage increase can be suppressed by removing link capacitor and suggest new 'Level-shifting switch driver'. this new gate driver is improved 66% of efficiency than switching loss of a existed push-pull amplifier. The proposed converter is tested with a 400W(200V-2A output) prototype circuit.

  • PDF

Interface between Photovoltaic System and Utility Line using Current-Source PWM Inverter (전류원형 PWM 인버터를 이용한 태양광 시스템과 계통 연계를 위한 연구)

  • Kang, Feel-Soon;Park, Sung-Jun;Park, Han-Woong;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 W prototype.

  • PDF

A Switching Method for Loss Reduction in DCM Operation of 3-Phase Interleaved Bidirectional DC-DC Converter (3상 인터리브드 양방향 DC-DC컨버터의 DCM구동시 손실 저감을 위한 스위칭 기법)

  • Seo, Bo-Gil;Jung, Jae-Hun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.319-320
    • /
    • 2014
  • 본 논문은 DCM(Discontinuous Conduction Mode)로 동작하는 3상 인터리브드 양방향 DC-DC컨버터를 다룬다. 전류 리플을 줄이기 위해 3상 인터리브드 방식을 이용하였으며 소프트 스위칭 조건을 확보하기 위해 DCM동작을 한다. DCM동작시 스위칭 손실을 분석하고 이를 저감하기 위하여 새로운 스위칭 기법을 제시하며 실험으로 유용성을 입증한다.

  • PDF