• Title/Summary/Keyword: Switch Cost

Search Result 370, Processing Time 0.035 seconds

Study of Drawing Optimum Switch Automation Rate to Minimize Reliability Cost (신뢰도 비용 최소화를 위한 개폐기의 최적 자동화율 도출에 관한 연구)

  • Chai, Hui-seok;Kang, Byoung-wook;Kim, Jin-seok;Moon, Jong-fil;Kim, Jae-chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.297-302
    • /
    • 2015
  • Replacing a manual switch installed in a feeder for a distribution system with an automatic one increases the reliability of the electric power system. This is because the automatic switch can shorten the duration of a fault the customer experiences by splitting the faulty section faster than the manual one does. However, improving the reliability of the distribution system may increase investment costs. Here, the investment costs include automatic switch cost, replacement work cost and labor cost. For this reason, importance should be attached to the proper balance between the increase of the investment costs and the improvement of the reliability of the distribution system. This article analyzed reliability index and economics when manual switches installed in a feeder (RBTS Bus2 model) was replaced by automatic ones. In addition, it attempted to draw the optimum rate of automation of manual switches by automatic ones using the GRG optimization method, considering the current economic requirements.

ZVT single phase power factor correction circuit with low conduction loss and low cost (저도통 손실, 저가의 ZVT 단상 역률 보상 회로)

  • Baek, J.W.;Cho, J.G.;Kim, W.H.;Rim, G.H.;Song, D.I.;Kwon, S.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.255-258
    • /
    • 1996
  • A new low conduction loss, low cost zero-voltage-transition power factor correction circuit(PFC) is presented. Conventional PFC which consists of a bridge diode and a boost converter(one switch) always has three semiconductor conduction drops. Two switch type PFCs reduces conduction loss by reducing one conduction drop but the cost is increased because of increased number of active switches. The proposed PFC reduces conduction loss with one switch, which allows low cost. Conduction loss improvement is a little bit less than that of two switch type, but very close up. Operation and features are comparatively illustrated and verified by simulation and experimental results of 1 kW laboratory prototype.

  • PDF

Control Algorithm for 4-Switch Inverter of 3-Phase SRM (3상 SRM 구동용 4-스위치 인버터 PWM 제어 알고리즘)

  • Yoon, Yong-Ho;Lee, Byoung-Kuk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.303-309
    • /
    • 2009
  • Switched Reluctance Motor(SRM) has become popular for industrial application, particularly for low medium drives due to the advantages of SRM over the other ac motors: SRM can be manufactured with low cost because it has a simple structure. But, asymmetric bridge converter that generally is used for driving requires two discrete switching devices and freewheeling diodes per phase, and cause the SRM drives to be complicated and to increase the cost of overall system. Therefore, this paper suggests a new type of 4-switch converter for SRM. 4-switch converter topology is studied to provide a possibility for the realization of low cost 3-phase SRM drive system. For effective utilization of the developed system, a new current control algorithm is designed and implemented to produce the desired dynamic performance. With the developed power conversion circuit and control scheme, it is expected that the proposed system can be widely used in commercial applications with reduced system cost.

Cost-Effective Single Switch Multi-Channel LED Driver

  • Hwang, Sang-Soo;Hwang, Won-Sun;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.319-326
    • /
    • 2015
  • In this paper, a cost-effective single switch multi-channel LED (light emitting diode) driver is proposed. While conventional LED drivers require as many non-isolated DC/DC converters as the number of LED channels, the proposed LED driver needs only one power switch and several balancing capacitors instead of expensive non-isolated DC/DC converters. Therefore, the proposed driver features a simpler structure, with a lower cost and a higher efficiency. Because its power switch can be turned off under the zero current switching condition, it has very desirable advantages such as improved electromagnetic interference characteristics and high efficiency. Moreover, it uses only a small number of DC blocking capacitors with no additional active devices for the current balancing of multi-channel LEDs. As a result, the proposed driver exhibits high reliability and is cost effective. To confirm the validity of the proposed driver, a theoretical analysis is performed, and design considerations and experimental results obtained from a prototype that is applicable to a 46" LED-TV are presented.

Design and Development of Low-Cost Switched Reluctance Motor Drive System (저가형 스위치드 릴럭턴스 모터 드라이브 시스템 개발)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2162-2167
    • /
    • 2009
  • A Low cost and variable speed brushless motor drive system with single switch per phase is presented. The motor drive is realized with a novel two-phase flux-reversal-free switched reluctance motor and a split AC two switch converter. The strategy of the controller and the converter for its realization are described. Comparisons between a split AC converter, asymmetric converter, split DC converter, single controllable switch converter, and N+1 converter are performed for its device rating, cost, switching losses and conduction losses, and converter efficiency. The split AC converter is analyzed and simulated to verify the characteristics of the converter circuitry and control feasibility and the simulation results are presented. The efficiency with various loads is numerically estimated and experimentally compared from viewpoint of subsystem and system in details. The focus of this paper is to compare the presented motor drive system to the asymmetric converter system throughout experiments and demonstrate single switch per phase converter having comparable efficiency as the asymmetric converter system.

Study on the algorithm for the Reasonable Switch Automation Rate with Customer Interruption Cost and Reliability Evaluation (정전비용과 신뢰도 분석을 통한 분할 개폐기의 적정 자동화율 도출 알고리즘에 관한 연구)

  • Chai, Hui-Seok;Shin, Hee-Sang;Cho, Sung-Min;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.467-473
    • /
    • 2013
  • The addition of disconnect switches to a distribution feeder or the replacement of the manual switches with the automatic switches do, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder and reducing the outage section. However, the improvement of reliability in power distribution system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we suggest the algorithm for determining the reasonable switch automation rate in the power distribution system. We evaluate the customer interruption cost and reliability for several cases - these cases relate with the switch automation rate - in the domestic metropolitan power distribution system, estimate the effectiveness of changing the manual switch to automatic switch quantitatively. These results can help the determining on the disconnect switch's automation rate.

Comparative Analysis of Flux-Reversal Motors with Six-Switch and Four-Switch Converters

  • Kang, Hyun-Soo;Lee, Byoung-Kuk;Kim, Tae Heoung
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • In this paper, the 6-switch inverter for the Flux-Reversal Motor (FRM) has been presented and compared to the 4-switch inverter for the FRM, which is more popular in cost effective applications. To analyze the FRM, we adopted the two-dimensional time-stepped voltage source finite element method (FEM) that uses the actual pulse width modulation (PWM) voltage waveforms as the input data. As the FRM characteristic analysis of actual pwm voltage input, the torque ripples and iron losses (eddy current and hysteresis loss) of the FRM can be precisely calculated. With the simulated and experimental results, the performance and limitations of the 4-switch FRM which is the cost effective drive compared to the 6-switch FRM drive are provided in more detail.

A High-Performance Scalable ATM Switch Design by Integrating Time-Division and Space-Division Switch Architectures

  • Park, Young-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.48-55
    • /
    • 1997
  • Advances in VLSI technology have brought us completely new design principles for the high-performance switching fabrics including ATM switches. From a practical point of view, port scalability of ATM switches emerges as an important issue while complexity and performance of the switches have been major issues in the switch design. In this paper, we propose a cost-effective approach to modular ATM switch design which provides the good scalability. Taking advantages of both time-division and space-division switch architectures, we propose a practically implementable large scale ATM switch architecture. We present a scalable shared buffer type switch for a building block and its expansion method. In our design, a large scale ATM switch is realized by interconnecting the proposed shared buffer switches in three stages. We also present an efficient control mechanism of the shared buffers, synchronization method for the switches in each stage, and a flow control between stages. It is believed that the proposed approach will have a significant impact on both improving the ATM switch performance and enhancing the scalability of the switch with a new cost-effective scheme for handling the traffic congestion. We show that the proposed ATM switch provides an excellent performance and that its cell delay characteristic is comparable to output queueing which provides the best performance in cell delay among known approaches.

  • PDF

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Hand Proximity Effect on Task Switching Performance Through Cue Modality (손 근접성이 단서양상에 따라 과제전환 수행에 미치는 효과)

  • Choi, Jeongyoon;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.73-88
    • /
    • 2018
  • The present study examined how processing features of visual information near the hand would affect task switching. Recent studies reported enhanced cognitive control of visual information presented the near hands. To investigate the enhancement of cognitive control based on the relationship between hand proximity and attention, we implemented 2 experiments. In the task switching performance experiment, the hand proximity effect depended on modality of cue and target. The first experiment showed that stimuli near the hand received greater cognitive control than stimuli far from the hand, resulting in smaller switch cost. The result could rule out the feature-binding problem, which identifies reduced switch cost as the cause instead of hand proximity. Our results show that hand proximity actually reduced switch cost. In the second experiment, we examined the effects of hand nearness, modality, and their interaction on switch cost. In task switching, the target was always visual, and the cue was presented either visually or auditorily. In addition, we manipulated the cue-target interval to observe the preparation effect of cue. The results showed that a visual cue near the hand reduced switch cost by shortening task preparation time. Also, modality switching between an auditory cue and visual target was remarkable in a hand-near condition. The results for the visual cue could be interpreted as a benefit of rapid visual attention orienting. On the other hand, the results for the auditory cue could be interpreted as the cost of interference of modality switching by slower attentional disengagement of stimuli near the hands. Finally, modulation of switch cost by attention induced by hand nearness was discussed.