• 제목/요약/키워드: Swirl velocity

검색결과 319건 처리시간 0.026초

Experimental Studies on Swirling Flow in a Vertical Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.907-913
    • /
    • 2011
  • Swirling flows are related to the spiral motion in the tangential direction in addition to the axial and radial direction using several swirl generators. These type of flows are used in combustion chambers to improve flame stability, heat exchanger to enhance heat transfer coefficients, agricultural spraying machines and some vertical pipes to move slurries or transport of materials. However, only a few studies three dimensional velocity profiles in a vertical pipe have been reported. In this present paper, 3 dimension particle image velocimetry(PIV) technique was employed to measure the velocity profiles in water along a vertical circular pipe with Reynolds number from 6000 to 13,000. A tangential inlet condition was used as the swirl generator to produce the required flow. The velocities were measured with swirling flow in the water along the test section using the PIV technique.

Dual Swirl 인젝터의 성능 평가에 관한 연구 (A Study on the Performance Evaluation of Dual Swirl Injectors)

  • 김선진;정해승
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.113-123
    • /
    • 2003
  • Both numerical analysis and experiment of cold and hot tests were performed to obtain basic design data for the swirl coaxial type Injector and to predict the combustion performance. Mass distribution, mixing distribution, mixing efficiency, characteristic velocity efficiency were measured by the cold tests and numerical analysis using the commercial thermo-hydraulic program. Test and analysis variables were recess, pressure drop, velocity ratio, mixing spray, mixture ratio. Hot tests were performed for the Uni-element injector to compare the performance with the cold test results, and, hot tests for Multi-element injector were performed to compare the performance with Uni-element injector. Designed thrust of the Uni-element injector liquid rocket was 35kgf at sea level and combustion chamber pressure, 20bar. Kerosene and Lox were used as a propellant.

Swirl이 있는 축대칭 연소기의 난류연소유동 해석 (Simulation of axisymmetric flows with swirl in a gas turbine combustor)

  • 신동신;임종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.117-121
    • /
    • 2000
  • We developed a general purpose program for the analysis of flows in a gas turbine combustor. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. We calculated a flow inside the C-type diffuser to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. We calculated turbulent diffusion flame behind a bluff body for the combustion simulation. Simulation shows two recirculating region like experimental results. Simulated velocity, turbulent kinetic energy, temperature and concentration distribution agree well with experimental data. Finally, simulation of axisymmetric flows with swirl shows two recirculating region like experimental results.

  • PDF

LFG 혼합 연료의 화염 안정화 특성 (Characteristics of Flame Stabilization of the LFG Mixing Gas)

  • 김선호;오창보;이창언;이인대
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.165-172
    • /
    • 1999
  • Landfill gas has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. The authors have examined emission characteristics as well as measured burning velocity of LFG mixed gas which contains plenty of $CO_{2}$. With the viewpoint of fuel utilization, flame stability could be one of important characteristics of LFG. In this study, the comparison experiments are conducted between $CH_{4}$ and LFG for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, it is found that stabilization region of LFG is not improved with that of $CH_{4}$ in non-swirl/or weak swirl jet diffusion flame. However, it is also known that flame stability is hardly affected by inert gas in the strong swirl with considering widened flame stabilization region of LFG rather than LNG.

  • PDF

직접분사식 가솔린 선회분사기 개발에 관한 연구 III (Development of Gasoline Direct Swirl Injector III)

  • 박용국;오재건;이충원
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.39-48
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. Main purpose of the present study is to measure spray characteristics of GDSI for real engine application. We have investigated experimentally spray tip penetration, spray angle, tip velocity and spatial spray distribution. Counter-rotating vortex grown on the spray surface plays an important role in the spray characteristics. Accordingly the spray tip penetration and tip velocity do not excess 50mm, 20m/s respectively, under 0.6MPa ambient pressure. the spray cone angle of GDSI have a same tendency to a simplex swirl atomizer.

  • PDF

Quantification of Volumetric In-Cylinder Flow of SI Engine Using 3-D Laser Doppler Velocimetry ( II )

  • Yoo, Seoung-Chool
    • 한국유체기계학회 논문집
    • /
    • 제10권4호
    • /
    • pp.47-54
    • /
    • 2007
  • Simultaneous 3-D LDV measurements of the in-cylinder flows of three different engine setups were summarized for the quantification of the flow characteristics in each vertical or horizontal plane, and in entire cylinder volume. The ensemble averaged-velocity, tumble and swirl motions, and turbulent kinetic energy during the intake and compression strokes were examined from the measured velocity data (approximately 2,000 points for each engine setup). The better spatial resolution of the 3-D LDV allows measurements of the instantaneous flow structures, yielding more valuable information about the smaller flow structures and the cycle-to-cycle variation of these flow patterns. Tumble and swirl ratios, and turbulent kinetic energy were quantified as planar and volumetric quantities. The measurements and calculation results were animated for the visualization of the flow, and hence ease to analysis.

An Investigation of Swirling Flow in a Cylindrical Tube

  • Chang, Tae-Hyun;Kim, Hee-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1892-1899
    • /
    • 2001
  • An experimental study was performed for measuring velocity and turbulence intensity in a circular tube for Re= 10,000, 15,000 and 20,000, with swirl and without swirling flow. The velocity fields were measured using PIV techniques and swirl motion was produced by a tangential inlet condition. Some preliminary measurements indicated that over the first 4 diameter, two regions of flow reversal were set up (the so called 2-cell structure). At the highest Reynolds numbers, the maximum values of the measured axial velocity components had moved toward the test tube wall and produce more flow reversal at the conter of the tube. As the Reynolds number increased, the turbulence intensity of swilling flow at the tube inlet also increased.

  • PDF

선회 분무 연소기의 분무 및 연소특성 분석 (Combustion and Atomization Characteristics of Swirl-Stabilized Spray Burner)

  • 윤성필;안재현;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.434-440
    • /
    • 2000
  • The atomization characteristics of air-assist atomizer which is surrounded by a coflowing airstream is investigated. The air-assist, coflow air stream had swirl imparted to them in the same direction with 45 degree's angle swillers. The fuel and air entered the combustor at ambient temperature and the combustor was operated in an unconfined environment. Diesel fuel was used for all the experiments. Drop size and mean velocity are reported for certain distances downstream from the nozzle. The droplet size and velocity measurements were performed using a two-component phase/Doppler particle analyzer and velocity profiles across the entire flowfield are presented.

  • PDF

Spray Characterization of Gas-Centered Swirl Coaxial Injectors Using an Optical Probe

  • ;홍문근;;;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.172-177
    • /
    • 2011
  • In order to investigate spray characteristics of gas-centered swirl coaxial injectors, a phase detection optical probe is employed to obtain the spatial evolution of the drop size and velocity. From the study on the optical probe responses under various impact angles, it is demonstrated that the drop size and velocity can be measured with an uncertainty less than 15% when the probe axis remains within about ${\pm}15^{\circ}$ of the drop velocity direction. This typical uncertainty is in good agreement with a previous study. It is also shown that the drop sizes measured by the optical probe are in accord with those evaluated by image processing techniques. Finally, the experiments with the optical probe are performed in dense sprays, as it were, in the near field of gas-centered swirl coaxial injectors. Some experimental results are presented and discussed to be of help to understanding of spray characteristics of the injectors.

  • PDF

나선형 흡기포트의 선회유동 특성에 관한 실험적 연구 (An experimental study on the swirl flow characteristics of a helical intake port)

  • 이지근;유경원;노병준;강신재
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.