• 제목/요약/키워드: Swirl Diffusion Flame

검색결과 41건 처리시간 0.021초

Swirl이 있는 축대칭 연소기의 난류연소유동 해석 (Simulation of axisymmetric flows with swirl in a gas turbine combustor)

  • 신동신;임종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.117-121
    • /
    • 2000
  • We developed a general purpose program for the analysis of flows in a gas turbine combustor. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. We calculated a flow inside the C-type diffuser to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. We calculated turbulent diffusion flame behind a bluff body for the combustion simulation. Simulation shows two recirculating region like experimental results. Simulated velocity, turbulent kinetic energy, temperature and concentration distribution agree well with experimental data. Finally, simulation of axisymmetric flows with swirl shows two recirculating region like experimental results.

  • PDF

이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향 (The Effects of $CO_2$ on Heat Transfer from Hydrogen Oxygen-enriched Flame)

  • 이창엽;최준원;백승욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.261-266
    • /
    • 2003
  • An experimental study has been conducted to evaluate the effects of $CO_{2}$ on heat transfer from hydrogen oxygen-enriched flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which mounted on top of the furnace. Five composition conditions of oxidizer were chosen with replacing $N_{2}$ with $CO_{2}$. In a steady state, total and radiative heat flux rates from the flame to the wall of furnace has been measured using heat flux meters. Temperature distribution in furnace also has been checked. Increasing $CO_{2}$ ratio in the oxidizer, the dominant heat transfer mode was changed into convection from radiation. Temperature in the furnace decreased but total heat flux increased.

  • PDF

이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향 (Effects of CO2 on Heat Transfer from Oxygen-Enriched Hydrogen Flame)

  • 이창엽;최준원;백승욱
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.937-944
    • /
    • 2004
  • An experimental study has been conducted to evaluate the effects of $CO_2$ on heat transfer from oxygen-enriched hydrogen flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which was mounted on top of the furnace. Five different oxidizer compositions were prepared by replacing $N_2$ with $CO_2$. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace have been measured using a heat flux meter. Temperature distribution in furnace also has been measured and compared. By increasing $CO_2$ proportion in the oxidizer, the convection played a more significant role rather than radiation. Overall temperature in the furnace was seen to be decreased, while the total heat flux has increased.

산업용 고부하버너 연소에서의 $NO_x$ 형성 및 저감에 관한 연구(I)-레이저 유도 형광법(LIF)를 이용한 이중선회 확산화염의 NO 농도 분포 측정- (A Study on Nitric Oxide Formation & Reduction in Industrial Burner (I) -NO Concetration-Distribution in Double Swirling Diffusion Flame by LIF-)

  • 박경석;김경수
    • 에너지공학
    • /
    • 제10권4호
    • /
    • pp.379-386
    • /
    • 2001
  • 본 연구는 산업용 고부하 버너연소에서의 NO$_{x}$ 저감에 관한 실험적 연구이다. 본 연구에서는 NO$_{x}$의 정량적 농도 분포 측정을 위하여 레이저 유동 형광법을 사용하였다. XeCL 엑시머 레이저를 사용하여 NO A-X (0, 0) 진동밴드를 226 nm로 여기하였다. 또한 P$_{21}$+Q$_1$(14.5)/R$_{12}$+Q$_2$(20.5)/P$_1$(23.5) 전이를 여기라인으로 하였으며 다른 간섭의 영향을 최소화 하였다. 본 실험에서 이중선회 확산화염에서의 NO 농도 분포를 측정하였으며, 이 스월버너에서의 화염의 후류에 있어서 NO 농도는 1차/2차 공기비가 증가할 때 감소함을 알수 있었다.

  • PDF

선회 확산버너에서 산소부화가 연소장에 미치는 영향 (Effect of Oxygen Enrichment in a Swirling Diffusion Gas Burner)

  • 이용후;이진석;이우섭;이도형
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.34-41
    • /
    • 2002
  • To investigate the combustion characteristics of a swirling diffusion gas burner with oxygen enrichment, mean temperature, CO, $CO_2$, and HC concentrations were measured at various oxygen enrichment conditions. According to the results, the flame temperature increased and the region of high temperature was expanded with increasing oxygen concentration. The $CO_2$ concentrations increased, while the CO concentrations decreased in proportion to the increase of oxygen concentration. On the other hand, the HC concentrations were decreased and this tendency was very strong at the downstream of the combustor.

  • PDF

고체 입자첨가가 수소화염의 열특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study about The Effect of Solid Particle Seeding on Thermal Characteristics of Hydrogen Flame)

  • 김중주;백승욱;김한석;최준원
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1503-1512
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition. the effects of addition of reacting as welt as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75 % was occupied by radiation while 25% by convection. When the aluminum oxide (Al$_2$O$_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.

고체입자의 수소화염에 있어서의 열복사에 관한 연구 (A Study about The Effect of Radiation on Particle-Seeding Hydrogen Flame)

  • 최준원;백승욱;김중주;김한석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.129-139
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative. However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition, the effects of addition of reacting as well as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75% was occupied by radiation while 25 % by convection. When the aluminum oxide ($Al_2O_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.

  • PDF

커먼레일식 직분식 가시화 디젤엔진의 파일럿 분사 연소 및 Soot 분포 특성에 관한 연구 (A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection)

  • 한용택;이재용;이기형
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.31-37
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I.Diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

  • PDF

석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석 (Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner)

  • 이정원;강성모;김용모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF

발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석 (Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation)

  • 정재화;서석빈;김종진;차동진;안달홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF