• Title/Summary/Keyword: Swirl Combustion

Search Result 520, Processing Time 0.027 seconds

Study of High Altitude Operation for Air Swirl Injector in Tangential Swirl Combustor (Tangential Swirl 연소기에 적용된 스월인젝터의 고고도 운전성능 연구)

  • Park, Hee-Ho;Ryu, Se-Hyun;Koo, Hyun-Cheol;Lee, Seong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.825-828
    • /
    • 2010
  • APU for aircraft is operated under severe condition as high altitude and low temperature, and demand high reliability in flight. This study is to be verified of the ignition and the combustion stability of APU under the harsh conditions. The basic data obtained in combustion rig test were directly applied to the altitude test with a engine. That start logic was obtained in ground development test. The results of altitude test show that air swirl injector has good operation and ignition performance at 20kft, hot/cold($-40^{\circ}C$) day.

  • PDF

NOx and CO Emission Characteristics of Premixed Oxidizer-staging Combustor using a Cyclone Flow (싸이클론 유동을 이용한 예혼합 다단연소기의 NOx 및 CO 배출특성)

  • Kim, Jong-Hyun;Lee, Hyun-Yong;Hwang, Cheol-Hong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • The aim of this work is to identify application of ultra low NOx and CO combustor. To achieve this, we developed the premixed oxidizer-staging combustor using a cyclone flow. Various factors such as equivalence ratio for the combustion condition and swirl type for secondary air injection have been tested experimentally for flame stability and NOx, CO emission characteristics. Before to do this, we had been tested cyclone premixed combustor in advance. it is similar to first combustor of premixed oxidizer-staging combustor. As a result, cyclone premixed flame shows the very high flame stability and low NOx emission. however, it can be identified that there were some problems such as a little high CO emission and thermal resistance of combustor wall. Cyclone premixed oxidizer-staging combustor can resolve those of problems. In our combustor, we can found out optimal condition that the secondary air injection method is swirl type, swirl direction is co-swirl and equivalence ratio of first combustor is 1.3. Quantitatively, we can achieve 10.8 ppm for NOx and 30.2 ppm for CO emissions respectively. Form this result, we can identified that cyclone premixed oxidizer-staging combustor can apply to ultra low NOx and CO combustor.

  • PDF

The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame (난류 비예혼합 평면화염의 유동과 연소 특성)

  • Kwark, Ji-Hyun;Jung, Yong-Ki;Jun, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

An Experimental Study of the Effect of PDA valve on the Combustion Characteristics of the Spark Ignition Engine (PDA 밸브가 SI 엔진의 연소특성에 미치는 영향에 대한 실험적 연구)

  • 김대열;한영출
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.104-112
    • /
    • 2004
  • The Swirl is one of the important parameters that effects the characteristics of combustion. PDA valve has been developed to satisfy two requirements of achieving sufficient swirl generation for improving the combustion and still maintaining high volumetric efficiency. This paper presents the experimental results of the effect of PDA valve on characteristics of combustion in single cylinder spark ignition engine. As a result, the combustion stability can be greatly improved by PDA valve. The data from present study are available for design of engine as the basic data.

A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection (커먼레일식 직분식 가시화 디젤엔진의 파일럿 분사 연소 및 Soot 분포 특성에 관한 연구)

  • Han, Yong-Taek;Lee, Jae-Yong;Lee, Ki-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I.Diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

  • PDF

A Study on Emission Characteristics according to Spark Plug Location in a Single SI Engine (점화플러그 위치에 따른 SI 단기통 엔진의 배출가스특성에 관한 연구)

  • Kim, Dae-Yeol;Han, Young-Chool;Baik, Doo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2082-2087
    • /
    • 2004
  • In this study, the variation of spark plug location in the combustion chamber was investigated for the sake of emission characteristics from SI engine by using PDA valve. The swirl is ong of the important parameters that effects emission characteristics. PDA valve has been used to satisfy the requirements of sufficient swirl generation to improve combustion and emission reduction to effect on flow profile on a combustion chamber. Especially, the variation of spark plug location have an important effect to analyze exhaust gas and the early flame propagative process. Therefore, this test is forced that injection timing, spark timing and intake air motion govern the stable combustion. From the results, it showed that the variable spark plug location and PDA valve can be reduced exhaust gas.

  • PDF

Stratified Degree Characteristics on Fuel Mixture According to Ambient Temperature and Pressure in a Constant Volume Combustion Chamber (정적연소기내에서의 분위기 온도 및 압력에 따른 혼합기 분포에 관한 성층화 정도 특성)

  • Lee Kihyung;Lee Changsik;Lee Changhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.180-188
    • /
    • 2005
  • It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption technology, it produces much unburned hydrocarbon and soot because of heterogeneous equivalence ratio in the combustion chamber. Therefore, the stratified mixture formation technology is very important to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The local effect of mixture formation according to control air-fuel distribution in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, we found that the flame propagation speed increase with swirl flow and the swirl promotes the formation of fuel and air mixture.

An Experimental Assessment of Combustion Stability of Coaxial Swirl Injectors and an Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소 안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • High-frequency combustion instabilities may occur during the development of feasible engine combustors. These instabilities can result in irreparable damages to the wall of combustors or the degradation of engine performance. So, it is essential to identify injectors that have high stability characteristics during the early stages of development. The objective of present study was to assess the stability of coaxial injectors and an impinging injector with different recess lengths in order to develop stable injectors optimally. Stability margin was evaluated based on the distance from operating condition to the unstable regions. A simulating combustion test method was used to analyze the stability of injectors. A small-scale combustion chamber was designed to simulate the first tangential acoustic mode of the actual combustor. Gaseous oxygen and a mixture of methane and propane were used as simulant propellants to satisfy their flow similarity to the actual propellants of a combustor in a liquid rocket combustor. The results indicated that injectors having small recess lengths showed relatively large combustion stability margins. For the injectors of large recess lengths, instability regions with large and super-large amplitude oscillations were observed. Thus, injector with shorter recess lengths had a higher stability than that of longer one due to the different mixing processes.

Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow (스월이 있는 3차원 모델 연소기 내의 연소특성)

  • Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.