• Title/Summary/Keyword: Swing dynamics

Search Result 49, Processing Time 0.018 seconds

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Swing Motion of Miniaturized Humanoid Robot (소형 휴머노이드 로봇의 그네 운동)

  • 이수영;정길도;성영휘;박성훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.267-272
    • /
    • 2004
  • In this Paper, we present analysis on the dynamics of human swing and its realization by a miniaturized humanoid robot. Since the motion of legs is the most important in the swing, the swing system can be approximated as a double pendulum. Based on Lagrangian analysis, the leg motion is designed to make the swing motion as sustained oscillation. In order to detect the peak instant of the swing and to synchronize the leg motion with the swing, we use ADXL acceleration/inclination sensor. The miniaturized humanoid in this paper has total 20 DOFs including 6 DOFs in each leg, 34cm in height, and 2kg in weight. As a result of realization of the swing by the humanoid, the sustained oscillation is verified through experiments.

Development of a Swing-Arm Type Polishing Machine for Large Optics (스윙암 방식을 이용한 대형 광학부품 연마가공기 개발)

  • Kim, Jin-Wook;Kim, Ock-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.3-7
    • /
    • 2008
  • A polishing machine adopting a new unique structural mechanism has been developed, named as a swing-arm type polishing machine. The mechanism is such that the tool path tracks on a spherical surface, of which the diameter is adjusted by setting up the machine mechanism properly. It has a strong benefit especially for polishing axis-symmetric concave mirror surfaces. The swing-arm type polishing machine with 5-axes has been designed in order to polish a concave mirror surface lip to diameter of 2 meters. The drawings are made using 3D CAD and strain-stress analysis has been done by finite element method. AC servo-motor has been used to move the swing arm and a operating software has been developed using a LapVIEW tool. Result of the test run was satisfactory which convinces the usefulness of the swing-arm type polishing machine.

  • PDF

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

An Application of Triple Segmental System in Golf Swing through an Inverse Dynamics Function (Inverse Dynamics 함수를 이용한 골프스윙 3분절 시스템의 적용)

  • Lim, Jung;Moon, Gun-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.57-67
    • /
    • 2005
  • The purpose of this study was to analyze the kinetic factors of the golf driver swing using the Inverse Dynamics function. For this purpose, joint force were calculated. In order to test the possibility of Inverse Dynamics function(motion-dependent interaction), a triple segmental system was set for wrist, left shoulder and lumbar and joint force working on the anatomical joint region was estimated. For this study, 7 professional golfers were sampled, and then, their driver swings were recorded with two high-speed digital video cameras (180 frames/sec.) to be synthesized into 3-dimensional images and coordinated. Then, Eular's equation was used to produce some kinematic data, which were used to calculate joint force and torque with Newton's function. All data were calculated using LabVIEW 6.1 graphic program. The results of this study can be summarized as follows; It was found that the joint force was generated on wrist, shoulder and lumbar joints in the direction of the target, and that the joint force was stronger in the direction of target immediately before impact. The joint force was generated towards the target to activate the nodes, and then, it was generated in the reverse direction to increase the speed during impact.

Swing Trajectory Optimization of Legged Robot by Real-Time Nonlinear Programming (실시간 비선형 최적화 알고리즘을 이용한 족형 로봇의 Swing 궤적 최적화 방법)

  • Park, Kyeongduk;Choi, Jungsu;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1193-1200
    • /
    • 2015
  • An effective swing trajectory of legged robots is different from the swing trajectories of humans or animals because of different dynamic characteristics. Therefore, it is important to find optimal parameters through experiments. This paper proposes a real-time nonlinear programming (RTNLP) method for optimization of the swing trajectory of the legged robot. For parameterization of the trajectory, the swing trajectory is approximated to parabolic and cubic spline curves. The robotic leg is position-controlled by a high-gain controller, and a cost function is selected such that the sum of the motor inputs and tracking errors at each joint is minimized. A simplified dynamic model is used to simulate the dynamics of a robotic leg. The purpose of the simulation is to find the feasibility of the optimization problem before an actual experiment occurs. Finally, an experiment is carried out on a real robotic leg with two degrees of freedom. For both the simulation and the experiment, the design variables converge to a feasible point, reducing the cost value.

Kinetic Analysis of Human Simulation for the Soft Golf Swing (소프트 골프 스윙 동작을 위한 인체 시뮬레이션의 운동역학 분석)

  • Kwak, K.Y.;Yu, M.;So, H.J.;Kim, S.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.141-150
    • /
    • 2010
  • The purpose of this study was to analyze the golf swing motion for a soft golf clubs and regular golf club. Soft golf is a newly developed recreational sports for all ages, including the elderly and the beginners of golf. To quantify the effect of using soft golf club, which much lighter club than regular clubs, a motion analysis has been performed using a 3D optoelectric motion tracking system that utilizes active infrared LEDs and near-infrared sensors. The subject performed swing motion using a regular golf club and a soft golf club in turn. The obtained motion capture data was used to build a 3D computer simulation model to obtain left wrist, elbow shoulder and lumbar joint force and torque using inverse and forward dynamics calculations. The joint force and torque during soft golf swing were lower than regular golf swing. The analysis gave better understanding of the effectiveness of the soft golf club.

The Analysis of GRF during Golf Swing with the Slopes (골프 스윙 시 경사면에 따른 지면 반력 분석에 관한 연구)

  • Moon, G.S.;Choi, H.S.;Hwang, S.H.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.187-194
    • /
    • 2007
  • The purpose of this study is to determine the characteristics of ground reaction force(GRF) in golf swing for various slopes of flat lie and uphill lies of 5 and 10 degrees. Five right-handed professional golfers were selected for the experiment and the 7 iron club was used. We used four forceplates to measure GRF and synchronized with the three-dimensional motion analysis system. Results showed that slope did not affect the total time for golf swing, but the time until the impact had a tendency to slightly increase for the uphill lie(p<0.05). The medial-lateral GRF of the right foot increased toward the medial direction during back swing, but less increases were found with the angle of uphill lie(p<0.05). The GRF of the left foot increased rapidly toward the medial direction at the uncocking and the impact during down swing, but decreased with the increase in the angle of uphill lie(p<0.05). The anterior-posterior GRF of both feet showed almost the same for different slopes. With the slopes, the vertical GRF of the right foot increased, but the vertical GRF of left foot decreased(p<0.05). Uphill lies would have negative effect to provide the angular momentum during back swing, restricting pelvic and trunk rotations, and to provide the precise timing and strong power during down swing, limiting movements of body's center of mass. The present study could provide valuable information to quantitatively analyze the dynamics of golf swing. Further study would be required to understand detailed mechanism in golf swing under different conditions.

The Fuzzy Control of Travelling Pendulum using MATRIXx (MATRIXx를 이용한 퍼지제어의 주행형 진자진동에의 적용)

  • Song, Seong-Yong;Lee, Hyun-Cheol;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.863-865
    • /
    • 1995
  • The studies about the swing control of the travelling pendulum have been developed in many ways. Most of them deal with the linearized pendulum model. This paper shows that the pendulum can be modelled without linearization by using MATRIXx, the dynamics simulation software. The fuzzy controller for reducing swing of the travelling pendulum is implemented with fuzzy tools supplied by MATRIXx.

  • PDF

Driving and Swing Analysis of a Crawler Type Construction Equipment Using Flexible Multibody Dynamics (탄성 다물체 해석기법을 이용한 크롤러형 건설장비의 주행 및 선회 동특성 해석)

  • 김형근;서민석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.101-109
    • /
    • 1997
  • A tool for the dynamic simulation and design technique of the excavator plays an important role in the prediction of dynamic behavior of the excavator in the initial design stage. In this paper, a flexible multibody dynamic analysis model including track of the crawler type excavator is developed using DADS and ANSYS. Through the driving simulation of the excavator travelling over rough road track, frequency characteristics of the upper frame and cabin are obtained, and the reaction forces acting on the track rollers are also presented for the fatigue life estimation. The effect of boom vibration modes on the joint reaction forces and accelerations is presented from the swing simulation.

  • PDF