• Title/Summary/Keyword: Swine Diets

Search Result 156, Processing Time 0.02 seconds

In vitro Solubility of Copper(II) Sulfate and Dicopper Chloride Trihydroxide for Pigs

  • Park, C.S.;Kim, B.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1608-1615
    • /
    • 2016
  • This study was conducted to determine the solubility of copper (Cu) in two sources of copper(II) sulfate ($CuSO_4$) including monohydrate and pentahydrate and three sources of dicopper chloride trihydroxide (dCCTH) including ${\alpha}$-form (dCCTH-${\alpha}$), ${\beta}$-form (dCCTH-${\beta}$), and a mixture of ${\alpha}$- and ${\beta}$-form (dCCTH-${\alpha}{\beta}$) at different pH and a 3-step in vitro digestion assay for pigs. In Exp. 1, Cu sources were incubated in water-based buffers at pH 2.0, 3.0, 4.8, and 6.8 for 4 h using a shaking incubator at $39^{\circ}C$. The $CuSO_4$ sources were completely dissolved within 15 min except at pH 6.8. The solubility of Cu in dCCTH-${\alpha}$ was greater (p<0.05) than dCCTH-${\beta}$ but was not different from dCCTH-${\alpha}{\beta}$ during 3-h incubation at pH 2.0 and during 2-h incubation at pH 3.0. At pH 4.8, there were no significant differences in solubility of Cu in dCCTH sources. Copper in dCCTH sources were non-soluble at pH 6.8. In Exp. 2, the solubility of Cu was determined during the 3-step in vitro digestion assay for pigs. All sources of Cu were completely dissolved in step 1 which simulated digestion in the stomach. In Exp. 3, the solubility of Cu in experimental diets including a control diet and diets containing 250 mg/kg of additional Cu from five Cu sources was determined during the in vitro digestion assay. The solubility of Cu in diets containing additional Cu sources were greater (p<0.05) than the control diet in step 1. In conclusion, the solubility of Cu was influenced by pH of digesta but was not different among sources based on the in vitro digestion assay.

New Technologies in Low Pollution Swine Diets : Diet Manipulation and Use of Synthetic Amino Acids, Phytase and Phase Feeding for Reduction of Nitrogen and Phosphorus Excretion and Ammonia Emission - Review -

  • Lenis, Nico P.;Jongbloed, Age W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.305-327
    • /
    • 1999
  • In the paper insight is given in the legislation policy to restrain environmental pollution by pig husbandry, focused on The Netherlands (Mineral Accounting System). Besides, nutritional measures are presented to reduce environmental pollution by lowering excretion of N and P, emphasizing (multi) phase feeding, the use of low protein, synthetic amino acids supplemented diets, phytase and its effect on phosphorus and calcium digestibility, its interaction with phytic acid and proteins, and the environmental impact of the use of phytase in pig diets. Also, nutritional means are indicated to reduce ammonia volatilization from pig operations. It is concluded that nutrition management can substantially contribute to reduction of N and P excretion by pigs, mainly by lowering dietary protein levels, (multi) phase feeding and the use of microbial phytase, and that the use of phytase on a large scale in The Netherlands has a tremendous environmental impact. In 20 years the excretion of P in growing-finishing pigs has more than halved. Ammonia emission from manure of pigs can be reduced substantially by lowering dietary protein content, but also by including additional non-starch polysaccharides in the diet. A very promising method to reduce ammonia emission is to manipulate dietary cation-anion difference, e.g. by adding acidifying salts to the diet, which will lower pH of urine substantially. Further research is desirable. This also applies to determining dietary factors influencing the odour release from manure. Finally, some speculation on the future of pig farming from an environmental viewpoint is presented.

Effect of wild ginseng on the laying performance, egg quality, cytokine expression, ginsenoside concentration, and microflora quantity of laying hens

  • Habeeb Tajudeen;JunYoung Mun;SangHun Ha;Abdolreza Hosseindoust;SuHyup Lee;JinSoo Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.351-364
    • /
    • 2023
  • The experiment was carried out to study the effect of Korean wild ginseng adventitious root supplementation on the laying performance, egg quality, cytokine expression, ginsenoside concentration, and microflora quantity of Institut de selection Animale (ISA) brown laying hens at 24 weeks old. A total of 90 laying hens were subjected to a completely randomized design at three treatments, five repetitions and six laying hens per replicate. The experiments were divided by diets into the basic feed (CON), basic feed + 0.1% wild ginseng (WG1), and basic feed + 0.5% wild ginseng (WG2). The feeding trial was carried out over a duration of 12 weeks after an initial acclimation period of 2 weeks. Feeds and water were administered ad libitum in mash form, and light was available for 16 hours per day. At the end of study, henday egg production (HDEP), average egg weight (AEW), and egg mass (EM) were increased (p <0.05) in WG2 at week 12. Feed conversion ratio (FCR) was decreased (p < 0.05) in WG2 at week 12. The ginsenoside content in egg yolk was increased (p <0.05) in laying hens in the WG2 treatment at week 12. Relative expression of tumor necrosis factor alpha (TNF-α) was reduced (p < 0.05) in the WG supplemented diets at week 12. The fecal microflora quantity of Lactobacillus was increased (p < 0.05) in WG2 at week 8 to week 12, and Escherichia coli (E. coli) was significantly decreased (p < 0.05) in the WG2 at week 12. We concluded that the result observed in the HDEP, AEW, EM and FCR was due to an increase in ginsenoside content, leading to an improvement in the TNF-α, and fecal microflora quantity such as Lactobacillus and E. coli in the WG2 supplemented diets. We therefore recommend the use of WG at application level 0.5% per basal diet for optimum laying performance in layer hens.

Study on Ammonia Emission Characteristic of Pig Slurry (양돈 슬러리의 암모니아 발생 특성에 관한 연구)

  • Lee S.H.;Yun N.K.;Lee K.W.;Lee I.B.;Kim T.I.;Chang J.T.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Ammonia emission from swine production process originates from three major sources: manure storage facility, swine housing, and land application of manure. Most of the ammonia gas that are emitted from swine production operations is the by-product of aerobic or anaerobic decomposition of swine waste by microorganism. Knowing the ammonia emission rate is necessary to understand how management practices or alternative manure handling process could reduce impacts of this emission on the environment and neighbors. Ammonia gas emission from pig slurry is very difficult to predict because it is affected by many factors including wind speed of slurry surface, temperature or pH of the swine slurry, sort breed differences and classes, and diets. This study was carried out to effects of pH and temperature on ammonia gas emission from growing-finishing pig slurry. Treated far slurry in this study were pH and temperature. Results showed that pH of slurry variable changes 5, 6, 7, 8 upon an addition of NaOH and $HNO_3$, respectively. The temperature of the slurry which was contained in a water bath maintained at increasing levels ranging from 10 to $35^{\circ}C$. Ammonia emission rate of influenced pH and temperature such that the increase in pH or temperature resulted to an increase in ammonia emission. The ammonia gas was not detected at pH 5 and 6. Moreover, at a slurry of pH 8, the ammonia ranged from 28 to 60ppm and 8-29 ppm at slurry pH of 7 while temperature was 13 to $33^{\circ}C$. When slurry pH was>6, the ammonia emission was significantly increased according to rise in temperature in contrast to acid treatment of the pH. There was also a significantly increase in ammonia emission relative to slurry pH of 7 to 8. The above findings showed that to effectively reduce ammonia emission from slurry of growing-finishing pigs, the pH and temperature should be maintained a low levels.

  • PDF

Effect of Substitution of Fermented King Oyster Mushroom By-Products Diet on Pork Quality during Storage

  • Chu, Gyo-Moon;Kang, Suk-Nam;Kim, Hoi-Yun;Ha, Ji-Hee;Kim, Jong-Hyun;Jung, Min-Seob;Ha, Jang-Woo;Lee, Sung-Dae;Jin, Sang-Keun;Kim, Il-Suk;Shin, Dae-Keun;Song, Young-Min
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • This study was carried out to investigate the effects of substitution of fermented king oyster mushroom (P. eryngii) by-products diet on pork meat quality characteristics, during the storage. A mixture of 40% king oyster mushroom by-products, 28% soybean meal and 20% corn was fermented for 10 d, and the basal diet was then substituted by the fermented diet mixture of up to 20, 50 and 80%, respectively. A total of 96 pigs were fed experimental diet (8 pigs per pen ${\times}$ 4 diets ${\times}$ 3 replication), and eight longissiumus (LD) per treatment were collected, when each swine reached to 110 kg of body weight. The Warner-Bratzler shear forces and cooking loss were significantly lowered in the treatments, while crude protein content and water holding capacity significantly (p<0.05) increased in the treatments than in the control group. The volatile basic nitrogen (VBN), at 1 d of storage, was lower in the treatments, while texture profiles and sensory evaluation did not differ between the control and the treatments (p>0.05). The pH, thiobarbituric acid reactive substances (TBARS), VBN and meat color in all treatments were increased as storage increased. Fermented king oyster mushroom by-products diet effects on lightness (CIE $L^*$), yellowness (CIE $b^*$) and chroma were determined, when LD muscles in T2 and T3 treatments were higher (p<0.05), up to 7 d (p<0.05). Therefore, the results indicate that the substitution of the fermented king oyster mushroom by-products diet to swine diet influenced the quality of the meat and it may be an economically valuable ingredient.

Value of spray-dried plasma as a supplement to swine diets

  • Jang, Kibeom;Kim, Junsu;Kim, Sheena;Jang, Yoontack;Lee, Jeongjae;Kim, Younghwa;Park, Juncheol;Kim, Younghoon;Song, Minho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • One of the most powerful health management practices is the use of antibiotics, but their use is being restricted because of health safety issues. The swine industry has been looking for various alternatives to antibiotics and increasingly considers the use of dietary factors like feed ingredients, feed additives, feed formulation practices, or feeding methods, instead of using antibiotics to improve pig health and performance. Among other alternatives to antibiotics, spray-dried plasma may be a candidate. Spray-dried plasma is a blood product that provides bioavailable nutrients and physiologically active components such as immunoglobulins, glycoproteins, growth factors, peptides, etc. It is an excellent protein source with balanced and highly digestible amino acids. Several beneficial physiological activities depend on components of spray-dried plasma, such as immune competence (antibacterial activity), modulation of microbiota and/or immune system, integrity of intestinal barrier function, etc. These beneficial effects can contribute to improvement of pig performance and health by modulation of microbiota in the digestive tract and/or immune system. Therefore, it is suggested that spray-dried plasma has great potential as an antibiotics alternative.

Trace Mineral Nutrition in Poultry and Swine

  • Richards, James D.;Zhao, Junmei;Harrell, Robert J.;Atwell, Cindy A.;Dibner, Julia J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1527-1534
    • /
    • 2010
  • Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.

Selenium in Pig Nutrition and Reproduction: Boars and Semen Quality - A Review

  • Surai, Peter F.;Fisinin, Vladimir I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.730-746
    • /
    • 2015
  • Selenium plays an important role in boar nutrition via participating in selenoprotein synthesis. It seems likely that selenoproteins are central for antioxidant system regulation in the body. Se-dependent enzyme glutathione peroxidase (GSH-Px) is the most studied selenoprotein in swine production. However, roles of other selenoproteins in boar semen production and maintenance of semen quality also need to be studied. Boar semen is characterised by a high proportion of easily oxidized long chain polyunsaturated fatty acids and requires an effective antioxidant defense. The requirement of swine for selenium varies depending on many environmental and other conditions and, in general, is considered to be 0.15 to 0.30 mg/kg feed. It seems likely that reproducing sows and boars are especially sensitive to Se deficiency, and meeting their requirements is an important challenge for pig nutritionists. In fact, in many countries there are legal limits as to how much Se may be included into the diet and this restricts flexibility in terms of addressing the Se needs of the developing and reproducing swine. The analysis of data of various boar trials with different Se sources indicates that in some cases when background Se levels were low, there were advantages of Se dietary supplementation. It is necessary to take into account that only an optimal Se status of animals is associated with the best antioxidant protection and could have positive effects on boar semen production and its quality. However, in many cases, background Se levels were not determined and therefore, it is difficult to judge if the basic diets were deficient in Se. It can also be suggested that, because of higher efficacy of assimilation from the diet, and possibilities of building Se reserves in the body, organic selenium in the form of selenomethionine (SeMet) provided by a range of products, including Se-Yeast and SeMet preparations is an important source of Se to better meet the needs of modern pig genotypes in commercial conditions of intensive pig production.

The Effect of Lysine to Protein Ratio on Growth Performance and Efficiency of Nitrogen Utilization in Pigs

  • Li, Defa;Xi, Pengbin;Wang, Junxun;Wang, Jitan;Ren, Jiping;Kang, Yufan;Thacker, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1282-1289
    • /
    • 2001
  • One feeding trial and two metabolic trials were conducted to investigate the effects of lysine to protein ratio in practical swine diets on growth performance and efficiency of nitrogen retention and utilization in different growing phases. In Trial one (the feeding trial), 90 mixed sex pigs weighing $9.1{\pm}1.4kg$ (Duroc ${\times}$ Landrance ${\times}$ Beijing Black) were used to study the effects of concentrations of 5.2, 5.3, 5.8, 6.4 and 7.2 g lysine/100 g CP in diets containing 1.2% lysine on growth performance and serum urea nitrogen. The results showed that feed conversion efficiency and economic efficiency were best for pigs fed the diet containing the lysine concentration of 5.8 g /100 g crude protein. Serum urea nitrogen concentration decreased linearly (p=0.0009) and serum free lysine content increased linearly (p=0.0017) as the lysine to protein ratio in diets increased from 5.2 to 7.2 g/100 g. In Trials two and three (the metabolic trials), five growing barrows (Duroc ${\times}$ Landrance ${\times}$ Beijing black), with initial body weights of approximately $26{\pm}2.4kg$ and $56.3{\pm}3.5kg$, respectively, were allotted to five dietary treatments according to a $5{\times}5$ Latin square design. Trial two contained 5.2, 5.7, 6.1, 6.7 and 6.8 g lysine/100 g CP treatments. Trial three contained 4.6, 5.0, 5.6, 6.1 and 6.6 g lysine/100 g CP treatments. The results showed that nitrogen retention in growing pigs decreased linearly (p=0.0011 in Trial two; p=0.0099 in Trial three) as the lysine to protein ratio in diets increased. The ratio of lysine to protein in diets resulting in maximum nitrogen retention was 5.2 g/100 g and 5.0 g/100 g in Trial two and Trial three, respectively. In Trial two, apparent biological value and gross nitrogen efficiency increased linearly (p=0.0135 and p=0.0192, respectively) as the lysine to protein ratio increased from 5.2 to 6.8 g lysine/100 g CP. In summary, we concluded that the optimal Lysine to Protein Ratios for 8-20 kg and 20-80 kg pigs were 5.8 g/100 g and 5.0 to 5.2 g/100 g, respectively.

Effects of the plane of nutrition for grower pigs on their grow-finish performance and meat quality in winter

  • Yang, Bo-Seok;Kim, Myeong Hyeon;Choi, Jung-Seok;Jin, Sang Keun;Park, Man-Jong;Song, Young-Min;Lee, Chul Young
    • Journal of Animal Science and Technology
    • /
    • v.61 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Little is known about the effects of the plane of nutrition on growth performance and meat quality of grow-finish pigs under commercial production conditions. The present study was thus addressed to this virtually unanswered question. One hundred and two barrows and 102 gilts weighing approximately 24 kg were fed phase I and II grower diets with a high, medium, or low plane of nutrition (HP, MP, or LP) to approximately 43 and 70 kg, respectively, in 6 replicates (pens). Subsequently, the HP and MP groups were fed the HP and MP1 finisher diets, respectively, the LP group being fed a second MP (MP2) finisher diet (LP1 group). Moreover, 68 LP-grower-fed barrows and gilts were added to the feeding trial and fed the MP1 and LP finisher diets to approximately 95 kg and thereafter, respectively (LP2 group). All MP diets had the lysine:calorie ratios comparable to the RNC recommendations, with < 18% differences between those of the HP and LP diets. The finisher pigs were reared in 16 pens and slaughtered at approximately 115 kg. The gain:feed ratio, but not average daily gain (ADG), was greater for the HP group than for the MP and LP during the grower phase I whereas during the grower phase II, ADG was greater (p < 0.05) for the HP and LP groups vs. MP. During the finisher phase I, ADG was less for the LP (LP1 + LP2) group vs. HP and MP, with no difference between the HP and MP groups; the gain:feed ratio was less for the LP vs. MP group. Backfat thickness was greater for the LP vs. HP group. The water holding capacity of fresh longissimus dorsi muscle (LM) and the sensory juiciness score for cooked LM were greatest for the LP group, the sensory flavor and tenderness scores being greater for the LP group vs. MP. In conclusion, results suggest that compensatory growth occurred for the LP and MP groups during the grower phase II and finisher phase I, respectively, with fat deposition increased for the LP group and that meat quality could be improved by the use of LP.