• Title/Summary/Keyword: Swarm communication

Search Result 97, Processing Time 0.021 seconds

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.735-748
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

The Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.

Remote Navigation Control for Intelligent Robot Using PSO (PSO를 이용한 지능형 로봇의 원격 주행 제어)

  • Mun, Hyun-Su;Joo, Young-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Swarm Group Mobility Model for Ad Hoc Wireless Networks

  • Kim, Dong-Soo S.;Hwang, Seok-K.
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • This paper proposes a new group mobility model for wireless communication. The mobility model considers the psychological and sociological behavior of each node and the perception of other nodes for describing interactions among a set of nodes. The model assumes no permanent membership of a group, capable of capturing natural behaviors as fork and join. It emulates a cooperative movement pattern observed in mobile ad hoc networks of military operation and campus, in which a set of mobile stations accomplish a cooperative motion affected by the individual behavior as well as a group behavior. The model also employs a physic model to avoid a sudden stopping and a sharping turning.

  • PDF

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Energy-aware Congestion Control in WSNs based on Bird Flocking Behavior (무선센서네트워크에서 에너지 잔량을 고려한 새 떼의 행동양식 기반 혼잡제어)

  • Jung, Soon-gyo;Yeoum, Sanggil;Kim, Dongsoo;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.177-178
    • /
    • 2014
  • 무선센서네트워크에서 사용되는 혼잡제어 방식은 일반적인 네트워크 방식과는 다르게 고려해야할 사항이 있다. 문제 해결에 사용할수 있는 자원이 한정적이며, 중앙에서 혼잡 제어를 할 경우 지나친 통신 부하가 발생할 수 있다. 본 논문에서는 집단지성(Swarm Intelligence)의 일종인 새 떼의 행동양식을 무선센서네트워크에 적용한 혼잡제어 기법을 살펴보고, 기존 기법에서 발생하는 에너지 소비 불균형을 해결하기 위한 기법에 대해 기술한다. 본 논문을 통해 무선센서네트워크에 새 떼의 간단한 행동양식을 적용함으로써 강인하고 확장 가능하며 자가 적응이 가능한 혼잡제어가 가능함을 확인하고, 집단지성이 우리가 직면하고 있는 다양한 연구 과제의 해결 도구가 될 수 있는 가능성을 보인다.

Design and Implementation of Interface System for Swarm USVs Simulation Based on Hybrid Mission Planning (하이브리드형 임무계획을 고려한 군집 무인수상정 시뮬레이션 시스템의 연동 인터페이스 설계 및 구현)

  • Park, Hee-Mun;Joo, Hak-Jong;Seo, Kyung-Min;Choi, Young Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Defense fields widely operate unmanned systems to lower vulnerability and enhance combat effectiveness. In the navy, swarm unmanned surface vehicles(USVs) form a cluster within communication range, share situational awareness information among the USVs, and cooperate with them to conduct military missions. This paper proposes an interface system, i.e., Interface Adapter System(IAS), to achieve inter-USV and intra-USV interoperability. We focus on the mission planning subsystem(MPS) for interoperability, which is the core subsystem of the USV to decide courses of action such as automatic path generation and weapon assignments. The central role of the proposed system is to exchange interface data between MPSs and other subsystems in real-time. To this end, we analyzed the operational requirements of the MPS and identified interface messages. Then we developed the IAS using the distributed real-time middleware. As experiments, we conducted several integration tests at swarm USVs simulation environment and measured delay time and loss ratio of interface messages. We expect that the proposed IAS successfully provides bridge roles between the mission planning system and other subsystems.

Reinforcement Learning Based Evolution and Learning Algorithm for Cooperative Behavior of Swarm Robot System (군집 로봇의 협조 행동을 위한 강화 학습 기반의 진화 및 학습 알고리즘)

  • Seo, Sang-Wook;Kim, Ho-Duck;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.591-597
    • /
    • 2007
  • In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new polygon based Q-learning algorithm and distributed genetic algorithms are proposed for behavior learning and evolution of collective autonomous mobile robots. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper. we verify the effectiveness of the proposed method by applying it to cooperative search problem.