• Title/Summary/Keyword: Swarm communication

Search Result 97, Processing Time 0.02 seconds

A Study on Design of Mobile Communication Microstrip Patch Antenna using PSO algorithm (PSO 알고리즘을 이용한 이동통신용 마이크로스트립 패치 안테나 설계에 관한 연구)

  • Kim, Myung-Dong;Park, Byeong-Ho;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1796-1803
    • /
    • 2013
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication microstrip patch antenna. The aim of the paper is to design and fabricate an inset fed rectangular microstrip antenna and study the effect of antenna dimensions length (L), width (W) and substrate parameters relative dielectric constant (${\varepsilon}r$), substrate thickness on radiation parameters of band width. PSO algorism was applied to IE3D, low resistance against, band width and advantage, were improved.

Metaheuristic Optimization Techniques for an Electromagnetic Multilayer Radome Design

  • Nguyen, Trung Kien;Lee, In-Gon;Kwon, Obum;Kim, Yoon-Jae;Hong, Ic-Pyo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • In this study, an effective method for designing an electromagnetic multilayer radome is introduced. This method is achieved by using ant colony optimization for a continuous domain in the transmission coefficient maximization with stability for a wide angle of incidence in both perpendicular and parallel polarizations in specific X- and Ku-bands. To obtain the optimized parameter for a C-sandwich radome, particle swarm optimization algorithm is operated to give a clear comparison on the effectiveness of ant colony optimization for a continuous domain. The qualification of an optimized multilayer radome is also compared with an effective solid radome type in transmitted power stability and presented in this research.

Attitude Learning of Swarm Robot System using Bluetooth Communication Network (블루투스 통신 네트워크를 이용한 군집합로봇의 행동학습)

  • Jin, Hyun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • Through the development of techniques, robots are becomes smaller, and many of robots needed for application are greater and greater. Method of coordinating large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot System is a system that independent autonomous robots in the restricted environment infer their status from preassigned conditions and operate their jobs through the coorperation with each other. Within the SRS,a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Specially, in order to cooperate with other robots, communicating with other robot is one of the essential elements. In such as Bluetooth has many adventages such as low power consumption, small size module package, and various standard procotols, it is rated as one of the efficent communcating system for autonomous robot is developed in this paper. and How to construct and what kind of procedure to develop the communicatry system for group behavior of the SRS under intelligent space is discussed in this paper.

  • PDF

Dynamic behavior control of a collective autonomous mobile robots using artificial immune networks (인공면역네트워크에 의한 자율이동로봇군의 동적 행동 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.124-127
    • /
    • 1997
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is simulated and suppressed by other robot using communication. Finally much simulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy.

  • PDF

An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots (자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Use of Artificial Bee Swarm Optimization (ABSO) for Feature Selection in System Diagnosis for Coronary Heart Disease

  • Wiharto;Yaumi A. Z. A. Fajri;Esti Suryani;Sigit Setyawan
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.130-138
    • /
    • 2023
  • The selection of the correct examination variables for diagnosing heart disease provides many benefits, including faster diagnosis and lower cost of examination. The selection of inspection variables can be performed by referring to the data of previous examination results so that future investigations can be carried out by referring to these selected variables. This paper proposes a model for selecting examination variables using an Artificial Bee Swarm Optimization method by considering the variables of accuracy and cost of inspection. The proposed feature selection model was evaluated using the performance parameters of accuracy, area under curve (AUC), number of variables, and inspection cost. The test results show that the proposed model can produce 24 examination variables and provide 95.16% accuracy and 97.61% AUC. These results indicate a significant decrease in the number of inspection variables and inspection costs while maintaining performance in the excellent category.

Particle Swarm Optimization based Haptic Localization of Plates with Electrostatic Vibration Actuators

  • Gwanghyun Jo;Tae-Heon Yang;Seong-Yoon Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Haptic actuators for large display panels play an important role in bridging the gap between the digital and physical world by generating interactive feedback for users. However, the generation of meaningful haptic feedback is challenging for large display panels. There are dead zones with low haptic sensations when a small number of actuators are applied. In contrast, it is important to control the traveling wave generated by the actuators in the presence of multiple actuators. In this study, we propose a particle swarm optimization (PSO)-based algorithm for the haptic localization of plates with electrostatic vibration actuators. We modeled the transverse displacement of a plate under the effect of actuators by employing the Kirchhoff-Love plate theory. In addition, starting with twenty randomly generated particles containing the actuator parameters, we searched for the optimal actuator parameters using a stochastic process to yield localization. The capability of the proposed PSO algorithm is reported and the transverse displacement has a high magnitude only in the targeted region.

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System (인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동)

  • Sim, Kwee-Bo;Lee, Dong-Wook;Sun, Sang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System

  • Sim, Kwee-bo;Lee, Dong-wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.591-597
    • /
    • 2001
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control school is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Accurate Range-free Localization Based on Quantum Particle Swarm Optimization in Heterogeneous Wireless Sensor Networks

  • Wu, Wenlan;Wen, Xianbin;Xu, Haixia;Yuan, Liming;Meng, Qingxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1083-1097
    • /
    • 2018
  • This paper presents a novel range-free localization algorithm based on quantum particle swarm optimization. The proposed algorithm is capable of estimating the distance between two non-neighboring sensors for multi-hop heterogeneous wireless sensor networks where all nodes' communication ranges are different. Firstly, we construct a new cumulative distribution function of expected hop progress for sensor nodes with different transmission capability. Then, the distance between any two nodes can be computed accurately and effectively by deriving the mathematical expectation of cumulative distribution function. Finally, quantum particle swarm optimization algorithm is used to improve the positioning accuracy. Simulation results show that the proposed algorithm is superior in the localization accuracy and efficiency when used in random and uniform placement of nodes for heterogeneous wireless sensor networks.