• Title/Summary/Keyword: Sustainable water management

Search Result 431, Processing Time 0.031 seconds

The Role of Decision-Makers' Platform for Securing Water by Moving Forward to Global Challenges (범지구적 물 문제 해결을 위한 정책입안자 네트워크의 역할)

  • Park, Ji-Seon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.21-21
    • /
    • 2011
  • Many Asian countries are suffered from various problems on water, which include the need for increased access to improves water supplies and sanitation through investments in infrastructure and capacity building, the balances water management system between development and ecosystem, and the need to reduce the human populations'vulnerability to water-related disasters, in particular, from climate variability and evolution. Decison makers are the most influential people in policy making and solving global water problems is central issue in eradicating poverty and achieving sustainable development (MDG). They across the world form an integral part of the architecture of national or regional governance. Their role covers a range of decision-making processes including passing legislation, scrutinizing government policy, and representing citizen through the election. We must ensure that these quiet but important issues get the political space, financial priority and public attention they deserve. Regional bodies such as the EU have also enacted legislation which introduces rules on water quality and other enforceable mattera across state boundaries. With this growing body of laws and policies on water issues, the role of decision makers is growing. Recognizing this role, decison makers' platform is essential to provide an opportunity to discuss crucial water issues in each country or region and for the purpose "2010 Parliaments for Water in Asia" has planned and organized to investigate our common issues and goals. During the meeting, we have an opportunity to observe water policy of Bangladesh, Bhutan, China, Mongolia, New Zealand and the Philippines and share the views on what needs to be done to move forward by decision makers for the future of water. In conclusion, the process of developing the decision makers' platform in each region would be ultimately essential point to increase the awareness of the developed and developing countries' roles, knowledge to clarify roles and responsibilities of each stake holders and finally be a major actor for resolving not only water challenges also issues of human settlements.

  • PDF

Water yield estimation of the Bagmati basin of Nepal using GIS based InVEST model (GIS기반 InVEST모형을 이용한 네팔 Bagmati유역의 물생산량 산정)

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.637-645
    • /
    • 2019
  • Among various ecosystem services provided by the basin, this study deals with water yield (WY) estimation in the Bagmati basin of Nepal. Maps of where water used for different facilities like water supply, irrigation, hydropower etc. are generated helps planning and management of facilities. These maps also help to avoid unintended impacts on provision and production of services. Several studies have focused on the provision of ecosystem services (ES) on the basin. Most of the studies have are primarily focused on carbon storage and drinking water supply. Meanwhile, none of the studies has specifically highlighted water yield distribution on sub-basin scale and as per land use types in the Bagmati basin of Nepal. Thus, this study was originated with an aim to compute the total WY of the basin along with computation on a sub-basin scale and to study the WY capacity of different landuse types of the basin. For the study, InVEST water yield model, a popular model for ecosystem service assessment based on Budyko hydrological method is used along with ArcGIS. The result shows water yield per hectare is highest on sub-basin 5 ($15216.32m^3/ha$) and lowest on sub-basin 6 ($10847.15m^3/ha$). Likewise, built-up landuse has highest WY capacity followed by grassland and agricultural area. The sub-basin wise and LULC specific WY estimations are expected to provide scenarios for development of interrelated services on local scales. Also, these estimations are expected to promote sustainable land use policies and interrelated water management services.

Parameter optimization of agricultural reservoir long-term runoff model based on historical data (실측자료기반 농업용 저수지 장기유출모형 매개변수 최적화)

  • Hong, Junhyuk;Choi, Youngje;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.93-104
    • /
    • 2021
  • Due to climate change the sustainable water resources management of agricultural reservoirs, the largest number of reservoirs in Korea, has become important. However, the DIROM, rainfall-runoff model for calculating agricultural reservoir inflow, has used regression equation developed in the 1980s. This study has optimized the parameters of the DIROM using the genetic algorithm (GA) based on historical inflow data for some agricultural reservoirs that recently begun to observe inflow data. The result showed that the error between the historical inflow and simulated inflow using the optimal parameters was decreased by about 80% compared with the annual inflow with the existing parameters. The correlation coefficient and root mean square error with the historical inflow increased to 0.64 and decreased to 28.2 × 103 ㎥, respectively. As a result, if the DIROM uses the optimal parameters based on the historical inflow of agricultural reservoirs, it will be possible to calculate the long-term reservoir inflow with high accuracy. This study will contribute to future research using the historical inflow of agricultural reservoirs and improvement of the rainfall-runoff model parameters. Furthermore, the reliable long-term inflow data will support for sustainable reservoir management and agricultural water supply.

Effective Use of Water Resource Through Conjunctive Use - (1) The Methodology (지표수-지하수를 연계한 수자원이 효율적 이용 - (1) 방법론)

  • Lee, Sang-Il;Kim, Byeong-Chan;Kim, Su-Min
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.789-798
    • /
    • 2004
  • Conjunctive use of surface and ground water is emerging as an alternative to resolve water shortage problems caused by drought or overpopulation. The region whose water supply depends on a single source has high risk of emergency situations, and may need to consider conjunctive use to overcome its weakness. Conjunctive use also can be a realistic and effective solution when additional or new water resources are to be developed. This paper presents a new methodology for managing surface and ground water resources with the aim of supplying water in a sustainable way. The developed method encompasses procedures to assess site suitability for conjunctive use, to devise water supply scenarios based on drought analysis, and to quantify the amount of water attained. It is believed that the systematic and objective features of the developed method enable it to be a useful supportive tool for water management planning and decision-making.

Farm-map Application Strategy for Agri-Environmental Resources Management (농업환경자원관리를 위한 팜맵 활용전략에 관한 연구)

  • Wee, Seong-Seung;Lee, Won-Suk;Jung, Nam-Su
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, a farm map utilization strategy for sustainable agricultural environmental resource management was derived. In addition, it is intended to present an efficient method of providing farm map-related services. As a result of the demand survey, the additional information required for the farm map includes 29% of information on crops grown on farmland, 21% of management-related information such as the owner or business entity, 17% of topographical information including slope, 15% of agricultural water information, 17% of land status information, and the addition of functions. 2% was investigated. As a result of intensive interview survey, it was found that it can be used for information on crops cultivated by agricultural businesses, actual cultivated area by township, arable land consolidation division boundary, and management of agricultural promotion zones. The farm map can be used as basic data to efficiently manage agricultural environmental resources. Since the status of support for individual farms or lots, such as soil improvement agent support and organic fertilizer support, may belong to personal information, it can be processed and provided in units required by administration or policies, such as administrative boundaries, subwatersheds, and watersheds. It can serve as a basis for executing the direct payment currently supported only by individual farms, even in a community unit that manages environmental direct payments.

Water level forecasting for extended lead times using preprocessed data with variational mode decomposition: A case study in Bangladesh

  • Shabbir Ahmed Osmani;Roya Narimani;Hoyoung Cha;Changhyun Jun;Md Asaduzzaman Sayef
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.179-179
    • /
    • 2023
  • This study suggests a new approach of water level forecasting for extended lead times using original data preprocessing with variational mode decomposition (VMD). Here, two machine learning algorithms including light gradient boosting machine (LGBM) and random forest (RF) were considered to incorporate extended lead times (i.e., 5, 10, 15, 20, 25, 30, 40, and 50 days) forecasting of water levels. At first, the original data at two water level stations (i.e., SW173 and SW269 in Bangladesh) and their decomposed data from VMD were prepared on antecedent lag times to analyze in the datasets of different lead times. Mean absolute error (MAE), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the machine learning models in water level forecasting. As results, it represents that the errors were minimized when the decomposed datasets were considered to predict water levels, rather than the use of original data standalone. It was also noted that LGBM produced lower MAE, RMSE, and MSE values than RF, indicating better performance. For instance, at the SW173 station, LGBM outperformed RF in both decomposed and original data with MAE values of 0.511 and 1.566, compared to RF's MAE values of 0.719 and 1.644, respectively, in a 30-day lead time. The models' performance decreased with increasing lead time, as per the study findings. In summary, preprocessing original data and utilizing machine learning models with decomposed techniques have shown promising results for water level forecasting in higher lead times. It is expected that the approach of this study can assist water management authorities in taking precautionary measures based on forecasted water levels, which is crucial for sustainable water resource utilization.

  • PDF

Feasibility of Changing or Canceling Designated Mariculture Management Areas in Ongjin-gun, Korea (옹진군 어장관리해역 해제 및 변경 타당성 평가)

  • Kang, Sungchan;Kim, Hyung Chul;Hwang, Un-Ki;Sim, Bo-ram;Kim, Chung-sook;Lee, Won-Chan;Hong, Sokjin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.576-588
    • /
    • 2017
  • Some of the mariculture grounds near Ongjin-gun, Korea, were designated as mariculture management areas in 2007. Areas are so designated when the environmental quality of the mariculture ground deteriorates or there is an outbreak of hypoxia or harmful red tide that kills mariculture organisms. We surveyed the water and sediment quality and examined the mortality of mariculture organisms in the Ongjin-gun mariculture area. In a survey conducted in 2016, the water quality was better than the environmental quality standards for mariculture grounds, excepts for dissolved inorganic nitrogen, and the sediment quality was good. However, there was still mortality of mariculture organisms in some of the designated management areas. The areas that met the environmental quality standards should be delisted and the areas in which we observed mortality should be classified as management areas. This will enable the sustainable development of aquaculture and preserve healthy mariculture grounds.

Guideline of LID-IMPs Selection and the Strategy of LID Design in Apartment Complex (LID-IMPs 선정 가이드라인 제시와 아파트단지에서의 LID 설계)

  • Jeon, Ji-Hong;Kim, Jung-Jin;Choi, Dong Hyuk;Han, Jae Woong;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.886-895
    • /
    • 2009
  • The guideline of selection of Integrated Management Practices (IMPs), such as wood, green roof, lawn, and porous pavement, for Low Impact Development (LID) design was proposed by ranking the reduction rate of surface runoff using LIDMOD1.0. Based on the guideline, LID was designed with several scenarios at two apartment complexes located at Songpa-gu, Seoul, Korea, and the effect of LID on surface runoff was evaluated during last 10 years. The effect of runoff reduction of IMP by land use change was highly dependent on the kind of hydrologic soil group. The wood planting is the best IMPs for reduction of surfac runoff for all hydrologic soil groups. Lawn planting is an excellent IMP for hydrologic soil group A, but reduction rate is low where soil doesn't effectively drains precipitation. The green roof shows constant reduction rate of surface runoff because it is not influenced by hydrologic soil group. Compared to the rate of other IMPs, the green roof is less effect the surface runoff reduction for hydrologic soil group A and is more effect for hydrologic soil group C and D followed to planing wood. The porous pavement for the impervious area is IMPs which is last selected for LID design because of the lowest reduction rate for all hydrologic soil group. As a result of LID application at study areas, we could conclude that the first step of the strategy of LID design at apartment complex is precuring pervious land as many area as possible, second step is selecting the kind of plant as more interception and evapotranspiration as possible, last step is replacing impervious land with porous pavement.

Estimation of Crop Water Requirement Changes Due to Future Land Use and Climate Changes in Lake Ganwol Watershed (간월호 유역의 토지이용 및 기후변화에 따른 논밭 필요수량 변화 추정)

  • Kim, Sinaee;Kim, Seokhyeon;Hwang, Soonho;Jun, Sang-Min;Song, Jung-Hun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.61-75
    • /
    • 2021
  • This study aims to assess the changes in crop water requirement of paddy and upland according to future climate and land use changes scenarios. Changes in the spatiotemporal distribution of temperature and precipitation are factors that lower the stability of agricultural water supply, and predicting the changes in crop water requirement in consideration of climate change can prevent the waste of limited water resources. Meanwhile, due to the recent changes in the agricultural product consumption structure, the area of paddy and upland has been changing, and it is necessary to consider future land use changes in establishing an appropriate water use plan. Climate change scenarios were derived from the four GCMs of the CMIP6, and climate data were extracted under two future scenarios, namely SSP1-2.6 and SSP5-8.5. Future land use changes were predicted using the FLUS (Future Land Use Simulation) model. Crop water requirement in paddy was calculated as the sum of evapotranspiration and infiltration based on the water balance in a paddy field, and crop water requirement in upland was estimated as the evapotranspiration value by applying Penman-Monteith method. It was found that the crop water requirement for both paddy and upland increased as we go to the far future, and the degree of increase and variability by time showed different results for each GCM. The results derived from this study can be used as basic data to develop sustainable water resource management techniques considering future watershed environmental changes.

Accessing socio-economic and climate change impacts on surface water availability in Upper Indus Basin, Pakistan with using WEAP model.

  • Mehboob, Muhammad Shafqat;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.407-407
    • /
    • 2019
  • According to Asian Development Bank report Pakistan is among water scarce countries. Climate scenario on the basis IPCC fifth assessment report (AR5) revealed that annual mean temperature of Pakistan from year 2010-2019 was $17C^o$ which will rise up to $21C^o$ at the end of this century, similarly almost 10% decrease of annual rainfall is expected at the end of the century. It is a changing task in underdeveloped countries like Pakistan to meet the water demands of rapidly increasing population in a changing climate. While many studies have tackled scarcity and stream flow forecasting of the Upper Indus Basin (UIB) Pakistan, very few of them are related to socio-economic and climate change impact on sustainable water management of UIB. This study investigates the pattern of current and future surface water availability for various demand sites (e.g. domestic, agriculture and industrial) under different socio-economic and climate change scenarios in Upper Indus Basin (UIB) Pakistan for a period of 2010 to 2050. A state-of-the-art planning tool Water Evaluation and Planning (WEAP) is used to analyze the dynamics of current and future water demand. The stream flow data of five sub catchment (Astore, Gilgit, Hunza, Shigar and Shoyke) and entire UIB were calibrated and validated for the year of 2006 to 2011 using WEAP. The Nash Sutcliffe coefficient and coefficient of determination is achieved ranging from 0.63 to 0.92. The results indicate that unmet water demand is likely to increase severe threshold and the external driving forces e.g. socio-economic and climate change will create a gap between supply and demand of water.

  • PDF