• Title/Summary/Keyword: Sustainable water management

Search Result 431, Processing Time 0.037 seconds

A Study on the Sustainable Fashion Design by Organic Cotton (오가닉 코튼[Organic Cotton]을 이용한 지속가능한 패션디자인)

  • Kim, Soo-Hyun;Lee, Jae-Jung;Chung, Hyun-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.2 s.111
    • /
    • pp.115-131
    • /
    • 2007
  • By the turn of the century, our society has been gradually more interested in environmental problems than any other time. Ecological change spurred by industrial pollution is occurring beyond the borders of nations, and has emerged as a global issue. Such change is resulting in exhaustion of natural resources and energy, and serious climatic change. In this study, main focus regarding the process of the fashion product design system was placed on the sustainable fashion design of organic cotton as a positive and alternative suggestion. It is expected that the results of this study contribute to the fashion design planning not only for future generation but also for the present time. This study researched on brands that produced their fashion products using organic cotton. The following cases proved to possess sustainability in their product system. The results of this study can be summarized as follows: Firstly, sustainable design in organic cotton products has been a progressive ere-design in 2000s. It is mainly focus concerned with recycling and re-use of materials to protect environment. It is not chemical dependant and takes a particular care in eliminating waste water and energy in the dyeing process. It is an environmentally sustainable design better than all the other design processes. Secondly, it is a design that cares for the common good of society and the global system of fair trading. The fair trading of organic cotton products induced a change in the structure of production system, while defending human rights. It also gave benefits by promoting development in local society and progress in traditional skills. Not to mention that it contributed to building up the concept of transparency in the global economic system. Lastly, the brands emphasize their social responsibility and management ethics to observe environmental policy which is established to protect our nature and people. Their public information reminds customers of the importance of protecting the environment from diverse pollution. Moreover, they hold social events to promote public awareness for environmental Issues. This study dealt only with the organic cotton, a small subset of the subject of sustainable design. It can be extended and applied to various other sustainable fashion design as a solution for global environmental issues.

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

Estimating optimal fishing effort of giant octopus, Enteroctopus dofleini by combo fishing - In the case of combo fishing in Gangwon - (대문어 연안복합어업의 경제적 적정어획노력량 추정 -강원도 연안복합어업을 대상으로-)

  • CHOI, Ji Hoon;KWON, Dae-Hyeon;LEE, Jue Bong;YANG, Jae Hyeong;KIM, Do Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.4
    • /
    • pp.333-342
    • /
    • 2018
  • In order to manage and rebuild fishery resources, the fishing effort should be controlled effectively. Especially in the setting up of the proper level of fishing efforts, economic standards as well as biological standards must be carefully considered to promote the sustainable and economically viable development of fisheries. This study is aimed to estimate optimal fishing effort of giant octopus by combo fishing which uses longline in Gangwon with statistical data. The result showed that current fishing effort is 28% higher than $E_{MEY}$. Unit fishing cost for each voyage will be 27% lower and unit fishing profit will be 17% higher than the current situation when the fishing effort meets $E_{MEY}$. Although current fishing effort is similar to the $E_{MSY}$, current catching is 16% higher than MSY and 22% higher than MEY.

Current Status and Application of Agricultural Subsurface Dams in Korea (국내 농업용 지하댐의 현황 및 활용 사례)

  • Yong, Hwan-Ho;Song, Sung-Ho;Myoung, Woo-Ho;An, Jung-Gi;Hong, Soon-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.18-26
    • /
    • 2017
  • The increasing frequency of droughts has been increasing the necessity of utilizing subsurface dams as reliable groundwater resources in areas where it is difficult to supply adequate agricultural water using only surface water. In this study, we analyzed the current status and actual conditions of five agricultural subsurface dams as well as the effect of obtaining additional groundwater from subsurface dams operated as one aspect of the sustainable integrated water management system. Based on the construction methods and functions of each subsurface dam, the five subsurface dams are classified into three types such as those that derive water from rivers, those that prevent seawater intrusion, and those that link to a main irrigation canal. The classification is based on various conditions including topography, reservoir location, irrigation facilities, and river and alluvial deposit distributions. Agricultural groundwater upstream of subsurface dams is obtained from four to five radial collector wells. From the study, the total amount of groundwater recovered from the subsurface dam is turned out to be about 29~44% of the total irrigation water demand, which is higher than that of general agricultural groundwater of about 4.6%.

A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities (저류지 생태공원 설계모형 개발에 관한 연구)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

PROPOSAL FOR DUAL PRESSURIZED LIGHT WATER REACTOR UNIT PRODUCING 2000 MWE

  • Kang, Kyoung-Min;Noh, Sang-Woo;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1005-1014
    • /
    • 2009
  • The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the $21^{st}$ century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well.

Development of a Real-Time Water Quality Monitoring System using Coastal Passenger Ships and PCS Telemetry

  • Jin, Jae-Youll;Park, Jin-Soon;Lee, Jong-Kuk;Park, Kwang-Soon;Lee, Dong-Young;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • To meet increasing needs for environmentally sustainable management of coastal area, there has been compelling pressure to establish a cost-effective and long-term coastal water quality (CWQ) monitoring system. A remote CWQ monitoring system, STAMP, has been developed and is in operation along the route between Kyema harbor and Anma Island in the southwestern coastal area of Korea. STAMP uses a PCS phone as a telemetry unit to transmit acquired data for monitoring general water quality parameters, and a routinely operating coastal passenger ship or car ferry. STAMP has various merits of low-cost operations; long-term monitoring with secure instrumentation; and stable real-time telemetry of acquired data with-out the loss and noise. It is expected that the system will serve as a very useful tool in the CWQ managing programs of Korea taking the advantage of many coastal passenger ships in various routes including the ships departing from the coastal industrial cities. The acquired data compiled on suspended surface sediment concentrations (SSSC) will be also valuably helpful in understanding the sediment budget across the routes of the vessel.

  • PDF

Assessment of Ecosystem services under changing climate in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon-Jeong;Lee, Sanghyup;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.148-148
    • /
    • 2019
  • The 2006 Millennium Ecosystem Assessment (MA) defines ecosystem services (ES) as "the benefits people obtain from ecosystems". Identifying where ES originates, whom it benefits and how it is changing over a period of time is critical in rapidly developing country like Nepal, where the risk of ES loss is high. In the context of various ecosystem services provided by watershed, this study, particularly deals with water yield, Soil loss and Carbon sequestration computation and evaluation in Bagmati Basin of Nepal. As Bagmati Basin incorporates capital city Kathmandu of nepal, land use change is significant over decades and mapping of ES is crucial for sustainable development of Basin in future. In this regard, the objectives of this study are 1) To compute the total and sub-watershed scale water yield of the basin, 2) Computation of soil loss and sediment retention in the basin, and 3) Computation of carbon sequestration in the basin. Integrated Valuation of Environmental Services and Tradeoffs (InVEST), a popular model for ecosystem service assessment based on Budyko hydrological method is used to compute Ecosystem services. The scenario of ES in two periods of time can be referenced for various approaches of prioritization and incorporation of their value into local and regional decision making for management of basin.

  • PDF

Evaluation of Use Satisfaction for Tohamsan and Namsan National Parks in Kyongju - Focused on Importance-Performance Analysis - (경주 토함산과 남산 국립공원의 이용만족 평가 - 중요도-성취도 분석을 중심으로 -)

  • Yi, Young-Kyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.3
    • /
    • pp.153-165
    • /
    • 2008
  • Recently the use demand for national parks has been rapidly increased due to the change of leisure patterns in Korea. The intensive use of national parks, however, can cause serious management problems both in resource conservation and in visitor satisfaction. In order to prepare the effective management plan for the sustainable use of national parks, it is essential to evaluate the visitor satisfaction. The purpose of this study is to provide important information for the management strategies for Namsan and Tohamsan national parks in Kyongju. Importance-performance analysis (IPA) was adopted to analyze the visitor expectation and satisfaction. The questionnaire survey was performed to the 420 visitors of the three sites (Namsan Sam-reung, Namsam Yong-jang, and Tohamsan) that are the most popular areas in Kyongju national park. The IPA for the 18 satisfaction items shows that all the values for importance are higher than those for performance in the three sites. This results indicates that visitors' satisfactions for the 18 items are lower than their expectations. The IP matrix reveals that the management effort should be concentrated on the educational opportunities for nature and culture in Yong-jang, on the convenient access to park in Sam-reung. and on the availability of cool drinking water in Tohamsan. Based on the results, several suggestions for the management strategies were summarized for the three sites in conclusion.