• 제목/요약/키워드: Sustainable Building Materials

검색결과 128건 처리시간 0.024초

염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구 (A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments)

  • 김낙현;노승준;태성호
    • KIEAE Journal
    • /
    • 제11권4호
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

지속가능한 실내환경디자인 요소의 체계적 분류 - 초고층 아파트 단위 주공간의 디자인요소를 중심으로 - (A Systematic Categorization of Interior Environmental Design Elements for Improving Sustainability - With Particular Reference to Unit Plan Design Elements of High-rise Apartment -)

  • 이은정;박영기
    • 한국실내디자인학회논문집
    • /
    • 제15권3호
    • /
    • pp.48-55
    • /
    • 2006
  • A sustainable building must produce an interior environment that is safe, healthy, comfortable and supportive of human performance and well-being. The medical human comfort: performance and productivity cost of unhealthy environment may cause much cost for healing. Research that buildings with daylight, fresh air, eco-materials and sustainable interior design are consistently rated as more comfortable and occupants performance, satisfaction and health. This study is to categorize systematically interior environmental design elements for improving sustainability with a view to developing an evaluation model of super high-rise apartment unit plans. With a literature survey and design guide lines concerning sustainable design elements, three hierarchical categorization levels of human, environment, energy and resources systems that consists of upper, middle, low design elements have been proposed. A total of 6 items have been suggested for middle level of categorization and 24 items for lower level. Finally a total of 107 design elements concerning the 24 items and their relationahips have been revealed. The needs for a systematic approach to interior environmental design for sustainability have been discussed.

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

미국 연구소 건축의 친환경 디자인 프로세스와 계획요소 - LABS21와 LEED 친환경 인증프로그램의 연구소 건축을 중심으로 - (Lessons from Green Strategies of the Laboratory Buildings in the U.S. - Focus on the Recent Green Development of LABS21 and LEED -)

  • 이중원;토스텐슛제
    • KIEAE Journal
    • /
    • 제12권5호
    • /
    • pp.43-52
    • /
    • 2012
  • This study aims to analyze the green strategies of laboratory buildings in the U.S. developed by LABS21 and LEED of USGBC. To achieve this goal, the paper analyzed the design process of green laboratories and the sustainable planning strategies. Laboratories, as a building type, have specific requirments stipulated by NIH. Chemical restive measures and biosafety level measures needed to be met in laboratory buildings prior to meeting green measures. Obama Admistration's Executive Order 13514 in mind, the paper has mainly focused on the five areas of green planning strategies in the laboratory buildings; site, energy, water, indoor environment, and materials. The study informed that the current green certification program needs to expand into the particular building types in order to; first, provide more realistic energy-saving benchmarking data, and second, provide building-type-specific green strategies.

20세기 현대건축에 나타난 환경친화적인 하이테크건축(High-Tech)에 관한 연구 (A Study on the environmental friendly High-Tech Architecture in the 20th century Architecture)

  • 김종인;박희영
    • 한국실내디자인학회논문집
    • /
    • 제27호
    • /
    • pp.128-135
    • /
    • 2001
  • Environmental friendly architecture'is undeniably a verb important and global paradigm. Beyond energy-conscious design and building with renewable materials, environmental friendly architecture also deals with recyclable and found forms and images. Concepts of sustainable building lead to the analysis of all currently available options for building optimization. Tomorrow's framework for information and communication processing, as well as automation and process optimization. The purpose of this study is to define the conceptions about 'environmental friendly Architecture' and to discover new alternative architecture in the end of the 20th century.

  • PDF

창호의 개폐조절을 기반으로 한 리스펀시브 뉴메틱 파사드 (Responsive Pneumatic Facade with Adaptive Openings for Natural Ventilation)

  • 이지선;이현수
    • 대한건축학회논문집:계획계
    • /
    • 제33권12호
    • /
    • pp.29-39
    • /
    • 2017
  • The building skins are important architectural elements in both functional and aesthetical aspects. This study focuses on developing a responsive facade with autonomous opening and closing behaviors in accordance with environmental conditions and user requirements for natural ventilation for the office building. The pneumatic ETFE panels are applied as the skin materials taking advantage of the efficiency of the inflatable skin of lightness, architectural performance and sustainable material properties. The biomimetic design methodology is taken for its innovative and visionary concept for the facade design. The interpretation of the building facade in analogy to natural organisms delivers functional and aesthetic characters. By exploring the structural movements of the plant pores, the facade control is developed to be autonomous by the parameter values. The facade opening and closing configurations are derived through parametric modeling and visualization programming. Through the application of this study, expected results are to improve user comfort and energy efficiency.

A STUDY ON THE CONSTRUCTION OF BIM DATA INTEROPERABILITY FOR ENERGY PERFORMANCE ASSESSMENT BASED ON BIM

  • Jungsik Choi;Hyunjae Yoo;Inhan Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.267-273
    • /
    • 2013
  • Early design phase energy modeling is used to provide the design team with first order of magnitude feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest construction of BIM data interoperability for energy performance assessment based on BIM. To archive this purpose, the authors have investigated advantage of BIM-based energy performance assessment through comparison with traditional energy performance assessment and suggested requirement for construction of open BIM environment such as BIM data creation, BIM data software practical use, BIM data application and verification. In addition, the authors have suggested BIM data interoperability and BIM energy property mapping method focused on materials.

  • PDF

황마 바이오차를 사용한 에너지 저장용 상변화 물질의 제조 및 성능평가에 관한 연구 (A promising form-stable phase change material prepared using cost effective Jute stick Biochar as the matrix of stearic acid for thermal energy storage)

  • 잔낫;소우멘 만달;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.169-170
    • /
    • 2022
  • Due to the higher use of nonrenewable fossil fuel energy, environment friendly sustainable energy from waste materials is attracting attention of the researchers. Considering that, jute stick (JS) biochar has been considered for this study for ecofriendly and sustainable thermal energy storage application. Waste jute sticks (JS), which are being mainly used as a fuel for cooking purpose, have been pyrolyzed to produce porous biochar and have been used for shape stabilization of stearic acid (SA) as phase change material (PCM). SA at 1:1 ratio has been incorporated into the activated JS biochar to concoct shape-stabilized phase change composite (SAJS). The SAJS has been evaluated by different techniques such as Fourier transform-infrared spectroscope (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The obtained composite PCM has shown excellent shape stability with a high latent heat storage, suggesting its suitability for thermal energy storage applications.

  • PDF

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • 제18권4호
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.

Financial Security of Vietnamese Businesses and Its Influencing Factors

  • NGUYEN, Van Cong;NGUYEN, Thi Ngoc Lan
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권2호
    • /
    • pp.75-87
    • /
    • 2020
  • This paper aims to not only investigate the nature of financial security and its measurement, but also to compare financial security level in 629 listed companies divided into four different industries (materials, industrials, health care, and consumer goods) before building a theoretical framework and regression models to examine the determinants of financial security. By gathering 2,167 financial statements published in Vietnamese Stock Exchange during eight years from 2012 to 2019, with the support of STATA, the research results indicate that six different internal factors, which are liquidity, profitability, firm size, debt management ratios, asset management ratios, and cash flows, explain 77.7% the change of financial security ratio and 3.4% the change in sustainable growth ratio. Specifically, while firm size has a positive impact on sustainable growth ratio but a negative impact on financial security ratio, deb management and profitability have an insignificant influence on the financial security level. Furthermore, an increase in asset management ratios would result positively in both two dependent variables whereas a rise in sustainable growth and a decline in financial security ratio are expected to witness if there is an increase in cash flows.