• Title/Summary/Keyword: Suspension Parameter

Search Result 142, Processing Time 0.022 seconds

Suspension of Sediment over Swash Zone (Swash대역에서의 해빈표사 부유거동에 관한 연구)

  • Cho, Yong Jun;Kim, Kwon Soo;Ryu, Ha Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.95-109
    • /
    • 2008
  • We numerically analyzed the nonlinear shoaling, a plunging breaker and its accompanying energetic suspension of sediment at a bed, and a redistribution of suspended sediments by a down rush of preceding waves and the following plunger using SPH with a Gaussian kernel function, Lagrangian Dynamic Smagorinsky model (LDS), Van Rijn's pick up function. In that process, we came to the conclusion that the conventional model for the tractive force at a bottom like a quadratic law can not accurately describe the rapidly accelerating flow over a swash zone, and propose new methodology to accurately estimate the bottom tractive force. Using newly proposed wave model in this study, we can successfully duplicate severely deformed water surface profile, free falling water particles, a queuing splash after the landing of water particles on the free surface and a wave finger due to the structured vortex on a rear side of wave crest (Narayanaswamy and Dalrymple, 2002), a circulation of suspended sediments over a swash zone, net transfer of sediments clouds suspended over a swash zone toward the offshore, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Application of Sensitivity Analysis to Vehicle Handling with Equivalent Cornering Stiffness (등가 코너링강성을 사용한 차량의 조종안정성에 대한 민감도 해석)

  • Lee, Chang-Ro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1434-1439
    • /
    • 2012
  • Vehicle is a dynamic system combined with various parameters. Dynamic characteristics of a vehicle can vary with the change of these parameters. To investigate the effect of the design parameter on vehicle handling performance the sensitivity analysis is carried out by the numerical method. The vehicle model is described by equivalent cornering stiffness that considers parameters of suspension and steering system. As the analysis results show the effect on the static and dynamic characteristics of the vehicle system, the sensitivity analysis can be used for synthesis of the design parameters to improve the vehicle handling characteristics at the design stage as well as during the vehicle test under development.

Study on the Analysis Process of the Damping Material for Reduced Floor Vibration (플로워 진동 저감을 위한 제진재 해석 프로세스 연구)

  • Kim, Ki-Chang;Hwang, Mi-Kyong;Seo, Seong-Hoon;Choi, Ja-Min;Kim, Chan-Mook;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2011
  • This paper describes the design process of floor damping material optimization to reduce structure borne noise. This process uses finite element analysis(FEA) along with experimental techniques to complement each other. The objective of this approach was to develop an optimized damping material application layout and thickness at the initial design stage. The first step is to find the sensitivity areas of vehicle body without damping material applied using FEA. In order to determine the high vibration areas of the floor panel, the velocity was measured using a scanning laser vibrometer from 20 Hz to 300 Hz. To excite the floor panel vibration, shaker was placed at the front suspension attachment point. The second step is the optimization process to determine the light weight solution of damping material. The design guideline of damping material was suggested that the lightweight solution was verified using test result of road noise. Design engineer could efficiently decide the design variable of damping material using parameter analysis results in early design stage.

Modeling of Automobile Suspension System for Analyzing Automobile Vibration (자동차 진동해석을 위한 자동차 현가계의 모델링)

  • Lee, Tae-keun;Kim, Byong-sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.135-147
    • /
    • 2005
  • As automobile technology advances, a smoother ride with less noise is desired. In order to achieve these purposes, a study on the vibration and noise produced by a moving automobile was carried out and a model for tire vibration characteristics which influence the ride performance was developed. The model was verified through simulations and experiments. The developed model was then applied to a half car model and automobile vibrations were analyzed. The effects of tire design parameters on the automobile vibration energy were investigated. The results from laboratory and field tests confirm the validity of the analytical model. The 17-DOF half-car model was built to analyze automobile vibration. The characteristics of the nonlinear model for a shock absorber were applied to this model. The results from the present 17-DOF half car model incorporating the analytical tire model with tire design parameters, were compared with the 5-DOF half car model where the tire was modeled with linear springs. The results of the 17-DOF model are close to the experimental results. Using the 17-DOF model, the influence of tire design parameter were considered. According to the analysis results, the vibrations at seat/body/wheel were predicted by simulation and experiment.

A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts (샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Behavior of cement-based permeation grouting in cohesionless soil considering clogging phenomena (폐색효과를 고려한 사질토의 시멘트 침투 그라우팅 거동 특성)

  • Seo, Jong-Woo;Lee, In-Mo;Kim, Byung-Kyu;Kwon, Young-Sam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • The behavior of cement-based permeation grouting is divided into three different groups depending on the grain size distribution of the soils: (1) zone of cement-based permeation grouting not feasible; (2) zone of cement-based permeation grouting feasible; and (3) zone in which an accelerating agent should be added to limit the penetration depth. In the cement-based permeation grouting feasible zone, the concept of a representative pore radius was proposed. The ratios of the representative pore radius to the mean pore radius were obtained by performing laboratory test and comparing with clogging theory; these values were in the range of 1.07 and 1.35 depending on the grain size distribution of the soils. In addition, a functional relationship between the lumped parameter (${\theta}$), the representative pore radius and the w/c ratio were derived by comparing and matching experimental results with predictions from theory. In the zone in which the accelerating agent should be added, the controlling process of gel time to limit the penetration depth was experimentally verified. The test results matched well with those obtained from theory utilizing the developed grout penetration program on condition that the viscosity increasing tendency of grout suspension with time is properly taken into account.