• Title/Summary/Keyword: Suspension Flexibility

Search Result 43, Processing Time 0.025 seconds

Control Algorithms of Active Suspension Systems for Ride Comfort Improvement (승차감 향상을 위한 액티브서스펜션의 제어알고리즘)

  • Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.61-67
    • /
    • 1992
  • Two control algorithms of active suspension system for improving ride quality are described and their effectiveness is assessed using a quarter car model. Optimal control approach demonstrates great flexibility to meet various running conditions of a vehicle. However, in order to fully utilize the power of optimal control apporach, accurate estimation of the state variables is essential. Simple, yet effective sky-hook algorithm seems to be well suited for real application because of its much relaxed requirements on sensing the stste variables and relative easiness to implment.

  • PDF

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.

Approximate Synthesis of 5-SS Multi Link Suspension System (근사 합성법을 이용한 5-SS 멀티 링크 현가장치의 기구학적 설계)

  • 김선평;심재경;안병의;이언구
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2665-2671
    • /
    • 2000
  • Dimensional Synthesis, which is apart of kinematic synthesis, is to determine the dimensions of a mechanism of preconceived typer for a specified task and prescribed performance. In this paper, in an effort to provide designers with flexibility, a dimensional approximate synthesis method is presented for utilizing prescribed tolerance both the displacement and joint positions of a mechanism to be synthesized. For this, a constrained optimization problem is formulated with displacement parameters and joint positions as variables. The proposed method is applied to the synthesis of a 5-SS multi link suspension mechanism. The method discussed here, however, can be easily applied to any mechanism of which the kinematic constraint equations can be derived.

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.

Comparison of the Duration of Hamstring Flexibility Improvement Following Termination of Modified Dynamic Stretching, Hold-Relax, and Static Stretching

  • Moon, A-Young;Jang, Hee-Jin;Jang, Hyun-Jeong;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • The aim of this study was to compare the duration of hamstring flexibility improvement after 3 stretching interventions in people with limited hamstring flexibility. Twenty-two subjects (12 men, 10 women) with limited hamstring flexibility of the dominant leg received 3 stretching interventions- modified dynamic stretching (MDS), hold-relax (HR), and static stretching (SS)-in a random order. All the subjects received all 3 interventions at intervals of at least 24 hours to minimize any carry-over effect. Modified dynamic stretching was applied as a closed kinetic chain exercise in the supine position by using the sling suspension system (Redcord Trainer(R)). The SS and HR interventions were individually performed in the straight leg raising (SLR) position, and all 3 interventions were performed for 3 minutes. Outcome measures included passive knee extension (PKE) measurements. Five post-test measurements were recorded for all subjects at 3, 6, 9, 15, and 30 minutes after the interventions. MDS was associated with a significant increase in knee extension range of motion even at 30 minutes post-treatment. In contrast, the HR and SS stretching methods showed increased hamstring flexibility for only 6 minutes post-treatment. Improvements in the range of motion of knee extension (indicating enhancement in hamstring flexibility) with MDS were maintained longer than those with the HR and SS interventions. Therefore, MDS may be more effective than the other interventions for maintaining hamstring flexibility.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Effect of Bogie Frame Flexibility on Air Gap in the Maglev Vehicle with a Feedback Control System

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.97-102
    • /
    • 2011
  • In an EMS (Electromagnetic suspension)-type Maglev (Magnetically-levitated) vehicle, the flexibility of the bogie frame may affect the acceleration of the electromagnet that is input into the control system, which could lead to instability in some cases. For this reason, it is desirable to consider bogie frame flexibility in air gap simulations, for the optimization of bogie structure. The objective of this paper is to develop a flexible multibody dynamic model of 1/2 of an EMS-type Maglev vehicle that is under testing, and to compare the air gap responses obtained from the rigid and the flexible body model. The feedback control system and electromagnet models that are unique to the EMS-type maglev vehicle must be included in the model. With this model, dynamics simulations are carried out to predict the air gap responses from the two models, of the rigid and flexible model, and the air gaps are compared. Such a comparative study could be useful in the prediction of the air gap in the design stage, and in designing an air gap control system.

  • PDF

Investigation on wind stability of three-tower cable-stayed-suspension hybrid bridges under skew wind

  • Xin-Jun Zhang;Li Bowen;Nan Zhou
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.427-443
    • /
    • 2024
  • By using a computational program of three-dimensional aerostatic and aerodynamic stability analysis of long-span bridges under skew wind, the dynamic characteristics and structural stability(including the aerostatic and aerodynamic stability) of a three-tower cable-stayed-suspension hybrid bridge with main span of 1 400 meters are investigated numerically under skew wind, and the skew wind and aerostatic effects on the aerostatic and aerodynamic stability of three-tower cable-stayedsuspension hybrid bridge are ascertained. The results show that the three-tower cable-stayed-suspension hybrid bridge is a longspan structure with greater flexibility, and it is more susceptible to the wind action. The aerostatic instability of three-tower cable-stayed-suspension hybrid bridges is characterized by the coupling of vertical bending and torsion of the girder, and the skew wind does not affect the aerostatic instability mode. The skew wind has positive or negative effects on the aerostatic stability of the bridge, the influence is between -5.38% and 4.64%, and in most cases, it reduces the aerostatic stability of the bridge. With the increase of wind yaw angle, the critical wind speed of aerostatic instability does not vary as the cosine rule as proposed by the skew wind decomposition method, the skew wind decomposition method may overestimate the aerostatic stability, and the maximum overestimation is 16.7%. The flutter critical wind speed fluctuates with the increase of wind yaw angle, and it may reach to the minimum value under the skew wind. The skew wind has limited effect on the aerodynamic stability of three-tower cable-stayed-suspension hybrid bridge, however the aerostatic effect significantly reduces the aerodynamic stability of the bridge under skew wind, the reduction is between 3.66% and 21.86%, with an overall average drop of 11.59%. The combined effect of skew and static winds further reduces the critical flutter wind speed, the decrease is between 7.91% and 19.37%, with an overall average decrease of 11.85%. Therefore, the effects of skew and static winds must be comprehensively considered in the aerostatic and aerodynamic stability analysis of three-tower cable-stayed-suspension hybrid bridges.

Effect of Active Suspension Unit with $H{\infty}$ Robust Controller on the Vehicle Dynamics Performances

  • Kanbolat, Ahmet;Okuyama, Yoshifumi;Takemori, Fumiaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.356-359
    • /
    • 1995
  • This paper uses a new method to improve the performance criterion of an active suspension car. The used control strategy is based on robust H$_{\infty}$ control theory taking into consideration the chasis flexibility. It will be shown that the modeling errors can be lumped into an unstructured uncertainty and the robust controller designed in the presence of these perturbations could maintain the stability and performance even for the controlled true system..

  • PDF