• Title/Summary/Keyword: Suspended truss

Search Result 10, Processing Time 0.026 seconds

A Study on Construction Sequence Optimization and Structural Analysis in consideration of Structural Concept of Hanging Structure based on the Applied Case (적용사례 중심의 매달린 구조물의 구조적 특성을 고려한 시공순서 최적화 및 시공단계별 구조해석 연구)

  • Park, Yong-Hyeon;Kim, Jong-Soo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.147-156
    • /
    • 2019
  • The purpose of this study is to consider structural issues and analyze construction sequences when constructing hanging floors supported by Mega truss. Since suspended structures were supported by the Mega truss, vertical load on suspended structures was needed to transfer from low to high. Deflection management of structures was the primary point under construction. The results of this study were as follows; The steel structures, which has relatively lighter self-weight, were constructed upwards after the base floor steel truss erection. Concrete Placing, which has relatively heavier self-weight, were performed in two phases to minimize structure's deflection. Slab was placed downwards from the top floor to lower floor whereas column was places upwards. Deflection measurements were carried out at every construction sequences.

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

Construction Monitoring for Steel Truss Bridge Widening Works (강 트러스교 확장공사시 시공중 계측)

  • Lee, Chang Soo;Jang, Jeong Hwan;Yi, Jang Seok;Kim, Nam Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2005
  • This study examines the stability of Sungsu bridge which was issued nine years ago because of its collapse accident and now is on the progress of extension work in each construction stage by construction monitoring system. From this study, the measured value in each construction stage of anchorage truss and suspended truss shows the agreement with the analytical values up to 60~110 percents, and the elements' stresses emanating from the pre-loading stage, are also similar to the analytical value. Regarding these results, it is expected that each member has enough stiffness and the construction condition is satisfactory. In addition, it is expected that the transverse members and sway bracing bolts integrate completely the existing truss and new attached truss as a one body from the result of the vibration test to find out the integration rates.

Response modification factor of suspended zipper braced frames

  • Abdollahzadeh, Gholamreza;Abbasi, Mehdi
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.165-185
    • /
    • 2015
  • The suspended zipper bracing system is suggested to reduce the flaws of ordinary zipper braced and concentric inverted V braced frames. In the design procedure of suspended zipper bracing systems, columns and top story truss elements are strengthened. This bracing system show different performances and characteristics compared with inverted V braced and ordinary zipper frames. As a result, a different response modification factor for suspend zipper frames is needed. In this research paper, the response modification factor of suspended zipper frames was obtained using the incremental dynamic analysis. Suspended zipper braced frames with different stories and bay lengths were selected to be representations of the design space. To analyze the frames, a number of models were constructed and calibrated using experimental data. These archetype models were subjected to 44 earthquake records of the FEMA-P695 project data set. The incremental dynamic analysis and elastic dynamic analysis were carried out to determine the yield base shear value and elastic base shear value of archetype models using the OpenSEES software. The seismic response modification factor for each frame was calculated separately and the values of 9.5 and 13.6 were recommended for ultimate limit state and allowable stress design methods, respectively.

Time-dependent analysis of cable trusses -Part I. Closed-form computational model

  • Kmet, S.;Tomko, M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.

The Roof Canopy for Seoul World Cup Stadium (서울월드컵경기장 지붕구조물 설계와 시공)

  • ;David.M.Campbell
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.5
    • /
    • pp.29-33
    • /
    • 2001
  • This paper summarizes the design and construction of the roof canopy structure for the SEOUL 2002 World Cup Main Stadium with a design inspired by Korean traditional beauty emphasizing images of the Pangpae kite. The stadium has also been designed for maximization of its post-World Cup utility to be used on as every basis by the citizens. The stadium canopy is a unique spatial network of truss members with a tensile membrane roof suspended from 16 masts. The canopy covers 40,950 ㎡. which is clad with a pre-stressed tensile membrane of PTFE coated fiberglass fabric and the glass.

  • PDF

Determination of structural performance of 3D steel pipe rack suspended scaffolding systems

  • Arslan, Guray;Sevim, Baris;Bekiroglu, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.671-681
    • /
    • 2017
  • This study investigates the structural performance of 3D steel pipe rack suspended scaffolding systems. For the purpose, a standard full scale 3D steel pipe rack suspended scaffolding system considering two frames, two plane trusses, purlins and wooden floor is constructed in the laboratory. A developed load transmission system was placed in these experimental systems to distribute single loads to the center of a specific area in a step-by-step manner using a load jack. After each load increment, the displacements are measured by means of linear variable differential transducers placed in several critical points of the system. The tests are repeated for five different system conditions to determine the structural performance. The means of system conditions is the numbers of the tie bars which are used to connect plane trusses under level. Finite elements models of the 3D steel pipe rack suspended scaffolding systems considering different systems conditions are constituted using SAP2000 software to support the experimental tests and to use the models in future studies. Each of models including load transmission platform is analyzed under a single loading and the displacements are obtained. In addition, to calibrate the numerical models some uncertain parameters such as elasticity modulus of wooden floor and connection rigidity of purlins to plane trusses are assessed experimentally. The results of this work demonstrate that when increasing numbers of tie bars the displacement values are decreased. Also the results obtained from developed numerical models have harmony with those of experimental. In addition, the scaffolding system with two tie bars at the beginning and at the end of the plane truss has the optimum structural performance compared the results obtained for other scaffolding system conditions.

Design Process of 5 Pedestrian Bridges in Chongna, Incheon (인천청라지구 5개 보도교의 디자인 프로세스)

  • Park, Sun-Woo;Choi, Chui-Kyoung
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.197-202
    • /
    • 2008
  • The Korea Land Corporation have planned Chongna site in Incheon as a great complex town including residence, financial center, resort, shopping mall, tour and sport. One of the large estate(17,800,000$m^2$) is under construction. Cheongna site is divided into six zoning parts, according to the meaning of 6 jewels(crystal, sapphire, ruby, emerald, jade, pearl, diamond). KLC required to me 6 pedestrian with various special forms and structural system. I will introduce a various pedestrians. There are not only 4 stayed and suspended bridges, but also a truss and arch bridges.

  • PDF

Effect of Bracket and H-beam Members on the Sungsoo Grand Bridge (브라켓 및 H-빔 부재가 성수대교 붕괴에 미친 영향)

  • 조효남;임종권;안중산
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.422-430
    • /
    • 1998
  • This paper presents the results of a major parametric study on the collapse cause of the Sungsoo Grand Bridge, a Gerber-type continuous truss bridge, which had collapsed just at the 15th year since opening to traffic. Among the various collapse causes such as poor design, poor welding, poor maintenance, and heavy traffic loads, this study focuses on the collapse cause assessment incorporating the effects of braket and H-beam members right below the expansion joint of the suspended truss. A local FEM analysis using fine shell elements is carrided out for the more precise estimation of stress range of the vertical pin-connected hanger whose fatigue fracture triggered the collapse of the bridge. Both the conventional S-N approach and the Ang-Munse's fatigue reliability method are used for the evaluation of the fatigue life and fatigue failure probability for the assessment based on all the available results of various field and labolatory tests. From these observations, It may be affirmatively stated that the effects of bracket and H-beam members accelerated the fatigue failure, and thus should be regarded as one of major causes that triggered the bridge collapse

  • PDF

A Study of Torsional Vibrations of Suspended Bridges (현수교(懸垂橋)의 비틀림진동(振動)에 관한 연구(硏究))

  • Min, Chang Shik;Kim, Saeng Bin;Son, Seong Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.27-37
    • /
    • 1983
  • A method of dynamic analysis is developed for torsional free vibrations of elliptical-box girder type or stiffening truss system suspension bridge. In this study, the method based on a finite element technique using a digital computer, is illustrated by two numerical examples, the Namhae Bridge which is located in Kyungsang nam-do opened on June, 1973, and the Mt. Chunma Bridge is simple span pedestrian's suspension bridge with lateral bracing system in Mt. Chunma, Kyungki-do, are used. In general, dynamic modes of complex suspension bridges are three-dimensional in form, i.e., coupling between vertical and torsional motions. However, introduced that amplitudes of oscillation are infinitesimal for coincidence with the purpose of it's use, thereupon, the torsional vibration analyses are treated without coupling terms. A sufficient number of natural frequencies and mode shapes for torsional free vibration are presented in this paper. In the case of Mt. Chunma Bridge, the natural frequencies and periods are computed with and without reinforcement, respectively, and compared their discrepancies. The influence of the auxiliary reinforcing cables is prevailing in the first few modes, namely, 1st and 2nd in symmetric and 1st, 2nd and 3rd in antisymmetric vibration, and conspicuous in the symmetric compared with the antisymmetric motion, but in the higher modes, this kind of simple accessory elucidates rether converse effects. In the Namhae Bridge, the results are compared with the Manual's obtained by wind tunnel test. It reveals commendable agreement.

  • PDF