• 제목/요약/키워드: Survival variable

검색결과 188건 처리시간 0.025초

Obtaining bootstrap data for the joint distribution of bivariate survival times

  • Kwon, Se-Hyug
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.933-939
    • /
    • 2009
  • The bivariate data in clinical research fields often has two types of failure times, which are mark variable for the first failure time and the final failure time. This paper showed how to generate bootstrap data to get Bayesian estimation for the joint distribution of bivariate survival times. The observed data was generated by Frank's family and the fake date is simulated with the Gamma prior of survival time. The bootstrap data was obtained by combining the mimic data with the observed data and the simulated fake data from the observed data.

  • PDF

NBU- $t_{0}$ Class 에 대한 검정법 연구

  • 김환중
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.185-191
    • /
    • 2000
  • A survival variable is a nonnegative random variable X with distribution function F and a survival function (equation omitted)=1-F. This variable is said to be New Better than Used of specified age $t_{0}$ if (equation omitted) for all $\chi$$\geq$0 and a fixed to. We propose the test for $H_{0}$ : (equation omitted) for all $\chi$$\geq$0 against $H_1$:(equation omitted) for all $\chi$$\geq$0 when the specified age $t_{0}$ is unknown but can be estimated from the data when $t_{0}$=${\mu}$, the mean of F, and also when $t_{0}$=$\xi_p$, the pth percentile of F. This test statistic, which is based on a linear function of the order statistics from the sample, is readily applied in the case of small sample. Also, this test statistic is more simple than the test statistic of Ahmad's test statistic (1998). Finally, the performance of this test is presented.

  • PDF

Bayesian Variable Selection in the Proportional Hazard Model

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.605-616
    • /
    • 2004
  • In this paper we consider the proportional hazard models for survival analysis in the microarray data. For a given vector of response values and gene expressions (covariates), we address the issue of how to reduce the dimension by selecting the significant genes. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method.

  • PDF

$NBU-t_0$ Class에 대한 검정법 연구 (A Study on Test for New Better than Used of an unknown specified age)

  • 김환중
    • 품질경영학회지
    • /
    • 제29권2호
    • /
    • pp.37-45
    • /
    • 2001
  • A survival variable is a non-negative random variable X with distribution function F(t) satisfying F(0) : 0 and a survival function F(t): 1-F(t). This variable is said to be New Better than Used of specified age t$_{0}$ if F(x+ t$_{0}$)$\leq$F(x).F(t$_{0}$) for all x$\geq$0 and a fixed t$_{0}$. We propose the test for H$_{0}$ : F(x+t$_{0}$)=F(x).F(t$_{0}$) for all x$\geq$0 against H$_1$: F(x+t$_{0}$) $\leq$ F(x).F(t$_{0}$) for all x$\geq$0 when the specified age to is unknown but can be estimated from the data when t$_{0}$$_{p}$, the pth percentile of F. This test statistic, which is based on the normalized spacings between the ordered observations, is readily applied in the case of small sample. Also, our test is more simple than Ahmad's test (1998). Finally, the performance of our test is presented.our test is presented.

  • PDF

An Application of the Clustering Threshold Gradient Descent Regularization Method for Selecting Genes in Predicting the Survival Time of Lung Carcinomas

  • Lee, Seung-Yeoun;Kim, Young-Chul
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.95-101
    • /
    • 2007
  • In this paper, we consider the variable selection methods in the Cox model when a large number of gene expression levels are involved with survival time. Deciding which genes are associated with survival time has been a challenging problem because of the large number of genes and relatively small sample size (n<

Bayesian bi-level variable selection for genome-wide survival study

  • Eunjee Lee;Joseph G. Ibrahim;Hongtu Zhu
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.28.1-28.13
    • /
    • 2023
  • Mild cognitive impairment (MCI) is a clinical syndrome characterized by the onset and evolution of cognitive impairments, often considered a transitional stage to Alzheimer's disease (AD). The genetic traits of MCI patients who experience a rapid progression to AD can enhance early diagnosis capabilities and facilitate drug discovery for AD. While a genome-wide association study (GWAS) is a standard tool for identifying single nucleotide polymorphisms (SNPs) related to a disease, it fails to detect SNPs with small effect sizes due to stringent control for multiple testing. Additionally, the method does not consider the group structures of SNPs, such as genes or linkage disequilibrium blocks, which can provide valuable insights into the genetic architecture. To address the limitations, we propose a Bayesian bi-level variable selection method that detects SNPs associated with time of conversion from MCI to AD. Our approach integrates group inclusion indicators into an accelerated failure time model to identify important SNP groups. Additionally, we employ data augmentation techniques to impute censored time values using a predictive posterior. We adapt Dirichlet-Laplace shrinkage priors to incorporate the group structure for SNP-level variable selection. In the simulation study, our method outperformed other competing methods regarding variable selection. The analysis of Alzheimer's Disease Neuroimaging Initiative (ADNI) data revealed several genes directly or indirectly related to AD, whereas a classical GWAS did not identify any significant SNPs.

다수준 프레일티모형 변수선택법을 이용한 다기관 방광암 생존자료분석 (Analysis of multi-center bladder cancer survival data using variable-selection method of multi-level frailty models)

  • 김보현;하일도;이동환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.499-510
    • /
    • 2016
  • 생존분석 회귀모형에서 적절한 변수를 선택하는 것은 매우 중요하다. 본 논문에서는 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 다수준 프레일티 모형 (multi-level frailty models)에서 벌점화 변수선택 방법 (penalized variable-selection method)의 절차를 소개한다. 여기서 모형 추정은 벌점화 다단계 가능도에 기초하며, 세 가지 벌점 함수 (LASSO, SCAD 및 HL)가 고려된다. 개발된 방법의 예증을 위해 벨기에 EORTC (European Organization for Research and Treatment of Cancer; 유럽 암 치료기구)에서 수행된 다국가/다기관 임상시험 자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 그 결과들의 상대적 장 단점에 대해 토론한다. 특히, 자료 분석 결과에 의하면 SCAD와 HL방법이 LASSO보다 중요한 변수를 잘 선택하는 것으로 나타났다.

랜덤 포리스트를 이용한 비제어 급성 출혈성 쇼크의 흰쥐에서의 생존 예측 (A Survival Prediction Model of Rats in Uncontrolled Acute Hemorrhagic Shock Using the Random Forest Classifier)

  • 최준열;김성권;구정모;김덕원
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권3호
    • /
    • pp.148-154
    • /
    • 2012
  • Hemorrhagic shock is a primary cause of deaths resulting from injury in the world. Although many studies have tried to diagnose accurately hemorrhagic shock in the early stage, such attempts were not successful due to compensatory mechanisms of humans. The objective of this study was to construct a survival prediction model of rats in acute hemorrhagic shock using a random forest (RF) model. Heart rate (HR), mean arterial pressure (MAP), respiration rate (RR), lactate concentration (LC), and peripheral perfusion (PP) measured in rats were used as input variables for the RF model and its performance was compared with that of a logistic regression (LR) model. Before constructing the models, we performed 5-fold cross validation for RF variable selection, and forward stepwise variable selection for the LR model to examine which variables were important for the models. For the LR model, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (ROC-AUC) were 0.83, 0.95, 0.88, and 0.96, respectively. For the RF models, sensitivity, specificity, accuracy, and AUC were 0.97, 0.95, 0.96, and 0.99, respectively. In conclusion, the RF model was superior to the LR model for survival prediction in the rat model.

평균-분산 가속화 실패시간 모형에서 벌점화 변수선택 (Penalized variable selection in mean-variance accelerated failure time models)

  • 권지훈;하일도
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.411-425
    • /
    • 2021
  • 가속화 실패시간모형은 로그 생존시간과 공변량간의 선형적 관계를 묘사해 준다. 가속화 실패시간모형에서 생존시간의 평균뿐만 아니라 변동성에도 영향을 미치는 공변량 효과를 추론하는 것은 흥미가 있다. 이를 위해 생존시간의 평균뿐만 아니라 분산을 모형화 하는 것이 필요하며, 이러한 모형을 평균-분산 가속화 실패시간모형이라 부른다. 본 논문에서는 벌점 가능도함수를 이용하여 평균-분산 가속화 실패시간모형에서 회귀모수에 대한 변수선택 절차를 제안한다. 여기서 벌점함수로서 LASSO, ALASSO, SCAD 그리고 HL (계층가능도)와 같은 네 가지 벌점함수를 연구한다. 제안된 변수선택 절차를 통해 중요한 공변량의 선택 뿐만 아니라 회귀모수의 추정을 동시에 제공할 수 있다. 제안된 방법의 성능은 모의실험을 통해 평가하고, 하나의 임상 예제자료를 통해 제안된 방법을 예증하고자 한다.

Comparing Role of Two Chemotherapy Regimens, CMF and Anthracycline-Based, on Breast Cancer Survival in the Eastern Mediterranean Region and Asia by Multivariate Mixed Effects Models: a Meta-Analysis

  • Ghanbari, Saeed;Ayatollahi, Seyyed Mohammad Taghi;Zare, Najaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5655-5661
    • /
    • 2015
  • Purpose: To assess the role of two adjuvant chemotherapy regimens, anthracycline-based and CMF on disease free survival and overall survival breast cancer patients by meta-analysis approach in Eastern Mediterranean and Asian countries to determine which is more effective and evaluate the appropriateness and efficiency of two different proposed statistical models. Materials and Methods: Survival curves were digitized and the survival proportions and times were extracted and modeled to appropriate covariates by two multivariate mixed effects models. Studies which reported disease free survival and overall survival curves for anthracycline-based or CMF as adjuvant chemotherapy that were published in English in the Eastern Mediterranean region and Asia were included in this systematic review. The two transformations of survival probabilities (Ln (-Ln(S)) and Ln(S/ (1-S))) as dependent variables were modeled by a multivariate mixed model to same covariates in order to have precise estimations with high power and appropriate interpretation of covariate effects. The analysis was carried out with SAS Proc MIXED and STATA software. Results: A total of 32 studies from the published literature were analysed, covering 4,092 patients who received anthracycline-based and 2,501 treated with CMF for the disease free survival and in order to analyze the overall survival, 13 studies reported the overall survival curves in which 2,050 cases were treated with anthracycline-based and 1,282 with CMF regimens. Conclusions: The findings illustrated that the model with dependent variable Ln (-Ln(S)) had more precise estimations of the covariate effects and showed significant difference between the effects of two adjuvant chemotherapy regimens. Anthracycline-based treatment gave better disease free survival and overall survival. As an IPD meta-analysis in the Italy the results of Angelo et al in 2011 also confirmed that anthracycline-based regimens were more effective for survival of breast cancer patients. The findings of Zare et al 2012 on disease free survival curves in Asia also provided similar evidence.