• Title/Summary/Keyword: Survival Function

Search Result 852, Processing Time 0.02 seconds

A Study on the Conditional Survival Function with Random Censored Data

  • Lee, Won-Kee;Song, Myung-Unn
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.405-411
    • /
    • 2004
  • In the analysis of cancer data, it is important to make inferences of survival function and to assess the effects of covariates. Cox's proportional hazard model(PHM) and Beran's nonparametric method are generally used to estimate the survival function with covariates. We adjusted the incomplete survival time using the Buckley and James's(1979) pseudo random variables, and then proposed the estimator for the conditional survival function. Also, we carried out the simulation studies to compare the performances of the proposed method.

  • PDF

Discount Survival Models

  • Shim, Joo-Y.;Sohn, Joong-K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.227-234
    • /
    • 1996
  • The discount survival model is proposed for the application of the Cox model on the analysis of survival data with time-varying effects of covariates. Algorithms for the recursive estimation of the parameter vector and the retrospective estimation of the survival function are suggested. Also the algorithm of forecasting of the survival function of individuals of specific covariates in the next time interval based on the information gathered until the end of a certain time interval is suggested.

  • PDF

A Study on the Survival Probability and Survival Factors of Small and Medium-sized Enterprises Using Technology Rating Data (기술평가 자료를 이용한 중소기업의 생존율 추정 및 생존요인 분석)

  • Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.11 no.2
    • /
    • pp.95-109
    • /
    • 2010
  • The objectives of this study are to identify the survival function (hazard function) of small and medium enterprises by using technology rating data for the companies guaranteed by Korea Technology Finance Corporation (KOTEC), and to figure out the factors that affects their survival. To serve the purposes, this study uses Kaplan-Meier Analysis as a non-parametric method and Cox proportional hazards model as a semi-parametric one. The 17,396 guaranteed companies that assessed from July 1st in 2005 to December 31st in 2009 are selected as samples (16,504 censored data and 829 accident data). The survival time is computed with random censoring (Type III) from July in 2005 as a starting point. The results of the analysis show that Kaplan-Meier Analysis and Cox proportional hazards model are able to readily estimate survival and hazard function and to perform comparative study among group variables such as industry and technology rating level. In particular, Cox proportional hazards model is recognized that it is useful to understand which technology rating items are meaningful to company's survival and how much they affect it. It is considered that these results will provide valuable knowledge for practitioners to find and manage the significant items for survival of the guaranteed companies through future technology rating.

  • PDF

A Study on Properties of the survival function Estimators with Weibull approximation

  • Lee, Jae-Man;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.279-287
    • /
    • 2003
  • In this paper we propose a local smoothing of the Nelson type estimator for the survival function based on an approximation by the Weibull distribution function. It appears that Mean Square Error and Bias of the smoothed estimator of the Nelson type survival function estimators are significantly smaller than that of the smoothed estimator of the Kaplan-Meier survival function estimator.

  • PDF

A Study on Properties of the survival function Estimators with Weibull approximation

  • Lee, Jae-Man;Cha, Young-Joon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.109-119
    • /
    • 2003
  • In this paper we propose a local smoothing of the Nelson type estimator for the survival function based on an approximation by the Weibull distribution function. It appears that Mean Square Error and Bias of the smoothed estimator of the Nelson type survival function estimator is significantly smaller then that of the smoothed estimator of the Kaplan-Meier survival function estimator.

  • PDF

Bootstrap confidence interval for survival function in the Koziol-Green model (KOZIOL-GREEN 모형에서 생존함수에 대한 붓스트랩 구간추정)

  • 조길호;정성화;최달우;최현숙
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.151-161
    • /
    • 1998
  • We study the bootstrap interval estimation for survival function in the Koziol-Green model. We construct the approximate bootstrap confidence intervals for survival function and prove the strong consistency for the bootstrap estimator of survival function. Finally we show that the approximate bootstrap confidence intervals are better in terms of coverage probability than confidence intervals based on asymptotic normal distribution and transformations of survival function via Monte Carlo simulation study.

  • PDF

Nonparametric Estimation of the Bivariate Survival Function under Koziol-Green Model I

  • Ahn, Choon-Mo;Park, Sang-Gue
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.975-982
    • /
    • 2003
  • In this paper we considered the problem of estimating the bivariate survival distribution of the random vector (X, Y) when Y may be subject to random censoring but X is always uncensored. Adapting conditional Koziol-Green model, simplified estimator for bivariate survival function is proposed. We perform simulation to compare the proposed estimator with popular estimators and discussed the performance of it.

  • PDF

Discount Survival Models for No Covariate Case

  • Joo Yong Shim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.491-496
    • /
    • 1997
  • For the survival data analysis of no covariate the discount survival model is proposed to estimate the time-varying hazard rate and the survival function recursively. In comparison with the covariate case it provide the distributionally explicit evolution of hazard rate between time intervals under the assumption of a conjugate gamma distribution. Also forecasting of the hazard rate in the next time interval is suggested, which leads to the forcecasted survival function.

  • PDF

Edgeworth Expansion and Bootstrap Approximation for Survival Function Under Koziol-Green Model

  • Kil Ho;Seong Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.233-244
    • /
    • 2000
  • Confidence intervals for survival function give useful information about the lifetime distribution. In this paper we develop Edgeworkth expansions as approximation to the true and bootstrap distributions of normalized nonparametric maximum likelihood estimator of survival function in the Koziol-Green model and then use these results to show that the bootstrap approximations have second order accuracy.

  • PDF

Design of 2.5D Survival Game using Inventory

  • Kim, Soo Kyun;Kim, Hong-Rae;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.31-36
    • /
    • 2018
  • The survival game is characterized by the ability to survive until the item is collected and the game is completed at the specified time, and the inventory function to store the item is the core of the game. Typical survival games include 'Don't Starve', 'H1Z1', and 'Lust'. The purpose of this paper is to design a 2.5D survival game that can be enjoyed by the smart device using Unity 3D engine. Because it is designed as a mobile platform, designing light inventory function using two lists rather than existing inventory function makes it easier to design than existing inventory and light design suitable for mobile. In general, it is characterized by designing a mobile game so that it does not depend on the place of the survival game.