• 제목/요약/키워드: Surrogate-based optimization

검색결과 78건 처리시간 0.027초

실험계획법과 크리깅 근사모델에 의한 게이트밸브 최적화 (Optimization of a Gate Valve using Design of Experiments and the Kriging Based Approximation Model)

  • 강정호;강진;박영철
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of this study is an optimization of gate valve made by forging method instead of welding method. In this study, we propose an optimal shape design to improve the mechanical efficiency of gate valve. In order to optimize more efficiently and reliably, the meta-modeling technique has been developed to solve such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Also, we prove reliability of the DACE model's application to gate valve by computer simulations using FEM(Finite Element Method).

사출금형 설계 최적화를 위한 반응표면 분석법의 적용 (Application of Response Surface Method for Injection mold Design Optimization)

  • 류미라;이권희;김영희;박흥식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2004
  • It is net easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by suing the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models based on the RSM is used in lien of the original models, facilitating design optimization.

  • PDF

Performance study of a simplified shape optimization strategy for blended-wing-body underwater gliders

  • Li, Chengshan;Wang, Peng;Li, Tianbo;Dong, Huachao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.455-467
    • /
    • 2020
  • Shape design optimization for Blended-wing-body Underwater Gliders (BWBUGs) is usually computationally expensive. In our previous work, a simplified shape optimization (SSO) strategy is proposed to alleviate the computational burden, which optimizes some of the Sectional Airfoils (SAs) instead of optimizing the 3-D shape of the BWBUG directly. Test results show that SSO can obtain a good result at a much smaller computational cost when three SAs are adopted. In this paper, the performance of SSO is investigated with a different number of SAs selected from the BWBUG, and the results are compared with that of the Direct Shape Optimization (DSO) strategy. Results indicate that SSO tends to perform better with more SAs or even outperforms the DSO strategy in some cases, and the amount of saved computational cost also increases when more SAs are adopted, which provides some reference significance and enlarges the applicability range of SSO.

양방향 축류펌프용 임펠러 블레이드의 형상최적설계 (Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump)

  • 백석흠;정원혁;강상모
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1141-1150
    • /
    • 2012
  • 이 논문은 선박에서 자세 안정용 양방향 축류펌프에 대한 임펠러 블레이드의 형상최적설계를 설명한 것이다. 양방향 축류펌프용 블레이드는 대칭형 익형을 사용하므로 효율이 기존의 단방향 축류펌프보다 낮다. 이러한 양방향 축류펌프의 단점을 최소화 하고 효율을 증가시키기 위해 최적설계기법을 사용하였다. 양방향 축류펌프의 성능 개선을 위해 상용 CFD 프로그램인 ANSYS CFX v.13 을 이용하여 유동해석을 수행하였다. 직교배열표, 분산분석과 직교다항식을 이용한 대리모델기반 최적설계방법은 최적 설계변수를 결정하고 주효과를 찾는데 사용하였다. 최적설계 결과로부터, 임펠러 블레이드의 유효한 설계변수를 확인하고 이의 최적해와 설계요구조건 만족에 대한 유용성을 설명하였다.

위성 탑재체 구조물의 최적화 기반 모델 보정 (Optimization-based model correlation of satellite payload structure)

  • 윤도희
    • 항공우주시스템공학회지
    • /
    • 제18권2호
    • /
    • pp.104-116
    • /
    • 2024
  • 인공위성은 발사체 모델과 연성하중해석을 수행하여 설계를 최종 검증하게 된다. 연성하중해석 결과의 정확도를 높이기 위해서는 유한요소모델 정확도가 매우 중요하며, 이를 위해 모델 보정은 필수적이다. 일반적으로 모델 보정은 재료 물성치와 두께 등을 하나씩 바꿔가며 수행하게 되는데, 이는 매우 많은 시간과 비용이 소요된다. 따라서 본 논문에서는 최적화 기법을 이용하여 탑재체 유한요소모델의 보정작업을 보다 효율적으로 수행하였다. 분산분석을 통해 중요 변수를 선정하고, 크리깅 대체 모델을 이용하여 해석과 최적화에 필요한 시간과 비용을 절감하였다. 본 논문에서 제안한 보정 방법은 진동 시험 결과만 있으면 적용할 수 있으며, 수치적인 계산 비용과 소요 시간을 대폭 줄일 수 있다는 점에서 효율성 측면에서 큰 장점이 있다.

A random forest-regression-based inverse-modeling evolutionary algorithm using uniform reference points

  • Gholamnezhad, Pezhman;Broumandnia, Ali;Seydi, Vahid
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.805-815
    • /
    • 2022
  • The model-based evolutionary algorithms are divided into three groups: estimation of distribution algorithms, inverse modeling, and surrogate modeling. Existing inverse modeling is mainly applied to solve multi-objective optimization problems and is not suitable for many-objective optimization problems. Some inversed-model techniques, such as the inversed-model of multi-objective evolutionary algorithm, constructed from the Pareto front (PF) to the Pareto solution on nondominated solutions using a random grouping method and Gaussian process, were introduced. However, some of the most efficient inverse models might be eliminated during this procedure. Also, there are challenges, such as the presence of many local PFs and developing poor solutions when the population has no evident regularity. This paper proposes inverse modeling using random forest regression and uniform reference points that map all nondominated solutions from the objective space to the decision space to solve many-objective optimization problems. The proposed algorithm is evaluated using the benchmark test suite for evolutionary algorithms. The results show an improvement in diversity and convergence performance (quality indicators).

직교배열표와 크리깅모델을 이용한 게이트밸브의 최적설계 (Optimization of a Gate Valve using Orthogonal Array and Kriging Model)

  • 강진;이종문;강정호;박희천;박영철
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.119-126
    • /
    • 2006
  • Kriging model is widely used as design DACE(analysis and computer experiments) model in the field of engineering design to accomplish computationally feasible design optimization. In this paper, the optimization of gate valve was performed using Kriging based approximation model. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. In addition, we describe the definition, the prediction function and the algorithm of Kriging method and examine the accuracy of Kriging by using validation method.

크리깅 근사모델을 이용한 마이크로 자이로스코프의 구조설계 (A Structural Design of Microgyroscope Using Kriging Approximation Model)

  • 김종규;이권희
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.149-154
    • /
    • 2008
  • The concept of robust design was introduced by Dr. G. Taguchi in the late 1940s, and his technique has become commonly known as the Taguchi method or the robust design. In this research, a robust design procedure for microgyroscope is suggested based on the kriging and optimization approaches. The kriging interpolation method is introduced to obtain the surrogate approximation model of true function. Robustness is calculated by the kriging model to reduce real function calculations. For this, objective function is represented by the probability of success, thus facilitating robust optimization. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method.

  • PDF

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model

  • Zhang, Jing;Au, Francis T.K.;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.157-173
    • /
    • 2020
  • In the finite element modelling of long-span cable-stayed bridges, there are a lot of uncertainties brought about by the complex structural configuration, material behaviour, boundary conditions, structural connections, etc. In order to reduce the discrepancies between the theoretical finite element model and the actual static and dynamic behaviour, updating is indispensable after establishment of the finite element model to provide a reliable baseline version for further analysis. Traditional sensitivity-based updating methods cannot support updating based on static and dynamic measurement data at the same time. The finite element model is required in every optimization iteration which limits the efficiency greatly. A convenient but accurate Kriging surrogate model for updating of the finite element model of cable-stayed bridge is proposed. First, a simple cable-stayed bridge is used to verify the method and the updating results of Kriging model are compared with those using the response surface model. Results show that Kriging model has higher accuracy than the response surface model. Then the method is utilized to update the model of a long-span cable-stayed bridge in Hong Kong. The natural frequencies are extracted using various methods from the ambient data collected by the Wind and Structural Health Monitoring System installed on the bridge. The maximum deflection records at two specific locations in the load test form the updating objective function. Finally, the fatigue lives of the structure at two cross sections are calculated with the finite element models before and after updating considering the mean stress effect. Results are compared with those calculated from the strain gauge data for verification.