• Title/Summary/Keyword: Surgical simulation

Search Result 154, Processing Time 0.027 seconds

A novel method for the management of proximal segment using computer assisted simulation surgery: correct condyle head positioning and better proximal segment placement

  • Lee, Yong-Chan;Sohn, Hong-Bum;Kim, Sung-Keun;Bae, On-Yu;Lee, Jang-Ha
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.21.1-21.8
    • /
    • 2015
  • Computer Assisted Simulation Surgery (CASS) is a reliable method that permits oral and maxillofacial surgeons to visualize the position of the maxilla and the mandible as observed in the patient. The purpose of this report was to introduce a newly developed strategy for proximal segment management according to Balanced Orthognathic Surgery (BOS) protocol which is a type of CASS, and to establish the clinical feasibility of the BOS protocol in the treatment of complex maxillo-facial deformities. The BOS protocol consists of the following 4 phases: 1) Planning and simulation phase, 2) Modeling phase, 3) Surgical phase, and 4) Evaluation phase. The surgical interventions in 80 consecutive patients were planned and executed by the BOS protocol. The BOS protocol ensures accuracy during surgery, thereby facilitating the completion of procedures without any complications. The BOS protocol may be a complete solution that enables an orthognatic surgeon to perform accurate surgery based on a surgical plan, making real outcomes as close to pre-planned outcomes as possible.

3-Dimensional Model Simulation Craniomaxillofacial Surgery using Rapid Prototyping Technique (신속 조형 기술로 제작된 인체모형을 이용한 술전 모의 두개악안면성형수술)

  • Jung, Kyung In;Baek, Rong-Min;Lim, Joo Hwan;Park, Sung Gyu;Heo, Chan Yeong;Kim, Myung Good;Kwon, Soon Sung
    • Archives of Plastic Surgery
    • /
    • v.32 no.6
    • /
    • pp.796-797
    • /
    • 2005
  • In plastic and reconstructive craniomaxillofacial surgery, careful preoperative planning is essential to get a successful outcome. Many craniomaxillofacial surgeons have used imaging modalities like conventional radiographs, computed tomography(CT) and magnetic resonance imaging(MRI) for supporting the planning process. But, there are a lot of limitations in the comprehension of the surgical anatomy with these modalities. Medical models made with rapid prototyping (RP) technique represent a new approach for preoperative planning and simulation surgery. With rapid prototyping models, surgical procedures can be simulated and performed interactively so that surgeon can get a realistic impression of complex structures before surgical intervention. The great advantage of rapid prototyping technique is the precise reproduction of objects from a 3-dimensional reconstruction image as a physical model. Craniomaxillofacial surgeon can establish treatment strategy through preoperative simulation surgery and predict the postoperative result.

Rapid Prototyping and Reverse Engineering Application for Orthopedic Surgery Planning

  • Ahn Dong-Gyu;Lee Jun-Young;Yang Dong-Yol
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • This paper describes rapid prototyping (RP) and reverse engineering (RE) application for orthopedic surgery planning to improve the efficiency and accuracy of the orthopedic surgery. Using the symmetrical characteristics of the human body, CAD data of undamaged bone of the injured area are generated from a mirror transformation of undamaged bone data for the uninjured area. The physical model before the injury is manufactured from Poly jet RP process. The surgical plan, including the selection of the proper implant, pre-forming of the implant and decision of fixation positions, etc., is determined by a physical simulation using the physical model. In order to examine the applicability and efficiency of the surgical planning technology, two case studies, such as a distal tibia comminuted fracture and an iliac wing fracture of pelvis, are carried out. From the results of the examination, it has been shown that the RP and RE can be applied to orthopedic surgical planning and can be an efficient surgical tool.

Hand-controller Mechanism and its Optimal Design Method for Manually Controlled Endoscopic Surgical Instrument (내시경 수술 도구의 수동 조작 메커니즘 및 이의 최적 형상 설계)

  • Lee, Hoyul;Song, Chanho;Son, Jaebum
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2019
  • This paper proposes a hand-controller mechanism for manually controlled endoscopic surgical instruments. A wire-driven mechanism is typically adapted for endoscopic surgical tools because motors cannot be embedded to the joints due to the size limitation. The wire-driven mechanism requires length control of wires that are pulled and released according to the desired joint angle. It is difficult for the operator to control individual wire lengths intuitively. The hand-controller mechanism should be able to control the wires easily without complex processes. For this purpose, we propose a mechanism that can control the wire lengths with a simple mechanical structure and its optimal design method using genetic algorithm. We show the simulation and experimental results to confirm the proposed mechanism and design methods are useful for the manually controlled endoscopic surgical instrument.

Mandibular Reconstruction with Free Fibular Flap and Dental Implant after Ablative Oral Cancer Surgery Using 3D RP Model: A Case Report

  • Kim, Duck-Hoon;Cha, Hyun-Suk;Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.90-94
    • /
    • 2014
  • Reconstruction of the mandible after ablative oral cancer surgery requires esthetic and functional rehabilitation. Restoring facial symmetry and dentition need accurate preoperative surgical planning and meticulous surgical technique. Free fibular flap is most useful tools to reconstruct mandible because of its adequate length and height, simultaneous harvest of soft and hard tissues and placing dental implants. In this case report, recurred squamous cell carcinoma in the right mandible had been resected and free fibular flap was utilized for mandible reconstruction using 3D rapid prototype. Simulation surgery before dental implant placement has been performed for esthetic and functional prosthodontics.

Virtual Surgical Planning System for Mandible Reconstruction (하악골 재건을 위한 가상수술계획 시스템)

  • Kim, Hannah;Kim, Youngjun;Cho, Hyunchul;Shim, Eung June;Lee, Deukhee;Kim, Laehyun;Park, Sehyung;Lee, Jung-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.196-203
    • /
    • 2016
  • In this paper, we propose a virtual surgical planning system specialized to mandible reconstruction surgery. Mandible reconstruction surgery is one of the most difficult surgeries, even for experienced surgeons. Compared to the traditional surgical procedures, virtual surgical planning can reduce the operation time in operating room while expecting better surgical outcome with optimized planning. However, with existing software systems, it requires much time and manual operations in virtual surgical planning. To reduce preparation time and improve accuracy of virtual surgical planning, we have developed optimized functions for virtual surgical simulation of mandible reconstruction with user-friendly interface. We found that the proposed system shortened the preparation time by half compared to the existing system from the experiments. The proposed system supports surgeons to make accurate plan faster and easier. The virtually planned results are used to make surgical cutting guide by 3D printing, and this will enhance surgical performance in operating room.

Single-tooth dento-osseous osteotomy with a computer-aided design/computer-aided manufacturing surgical guide

  • Kang, Sang-Hoon;Kim, Moon-Key;Lee, Ji-Yeon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.2
    • /
    • pp.127-130
    • /
    • 2016
  • This clinical note introduces a method to assist surgeons in performing single-tooth dento-osseous osteotomy. For use in this method, a surgical guide was manufactured using computer-aided design/computer-aided manufacturing technology and was based on preoperative surgical simulation data. This method was highly conducive to successful single-tooth dento-osseous segmental osteotomy.

An Optimized Model for the Local Compression Deformation of Soft Tissue

  • Zhang, Xiaorui;Yu, Xuefeng;Sun, Wei;Song, Aiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.671-686
    • /
    • 2020
  • Due to the long training time and high training cost of traditional surgical training methods, the emerging virtual surgical training method has gradually replaced it as the mainstream. However, the virtual surgical system suffers from poor authenticity and high computational cost problems. For overcoming the deficiency of these problems, we propose an optimized model for the local compression deformation of soft tissue. This model uses a simulated annealing algorithm to optimize the parameters of the soft tissue model to improve the authenticity of the simulation. Meanwhile, although the soft tissue deformation is divided into local deformation region and non-deformation region, our proposed model only needs to calculate and update the deformation region, which can improve the simulation real-time performance. Besides, we define a compensation strategy for the "superelastic" effect which often occurs with the mass-spring model. To verify the validity of the model, we carry out a compression simulation experiment of abdomen and human foot and compare it with other models. The experimental results indicate the proposed model is realistic and effective in soft tissue compression simulation, and it outperforms other models in accuracy and real-time performance.

Efficacy of 3D-printed simulation models of unruptured intracranial aneurysms in patient education and surgical simulation

  • Seung-Bin Woo;Chang-Young Lee;Chang-Hyun Kim;Min-Yong Kwon;Young San Ko;Jong-Ha Lee;Jin-Chul Heo;Sae Min Kwon
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2023
  • Objective: The purpose of this study was to determine the efficacy of a 3D-printed aneurysm simulation model (3DPM) in educating patients and improving physicians' comprehension and performance. Methods: This prospective study involved 40 patients who were diagnosed with unruptured intracranial aneurysms (UIAs) and scheduled for surgical clipping or endovascular coiling and randomly divided into two groups (the 3DPM group and the non-3DPM group). The 3DPM was used in preoperative consultation with patients and intraoperatively referenced by surgeons. The patients, 7 neurosurgical residents, and 10 surgeons completed questionnaires (5-point Likert scale) to determine the usefulness of the 3DPM. Results: Patients in the 3DPM group had significantly higher scores in terms of their understanding of the disease (mean 4.85 vs. 3.95, p<0.001) and the treatment plan (mean 4.85 vs. 4.20, p=0.005) and reported higher satisfaction during consultation (5.0 vs. 4.60, p=0.036) than patients in the non-3DPM group. During patient consultation, 3DPMs were most useful in improving doctor-patient communication (mean 4.57, range 4-5). During clipping surgery, the models were most useful in assessing adjacent arteries (mean 4.9, range 4-5); during endovascular coiling, they were especially helpful in microcatheter shaping (mean 4.7, range 4-5). Conclusions: In general, 3DPMs are beneficial in educating patients and improving the physician's performance in terms of surgical clipping and endovascular coiling of UIAs.

3D computer-assisted orthognathic surgery (3차원 디지털 시스템을 이용한 턱교정 수술)

  • Kim, Choong Nam;Kimm, Soo Ho;Lim, Ho Kyung;Lee, Eui Seok
    • The Journal of the Korean dental association
    • /
    • v.57 no.2
    • /
    • pp.100-104
    • /
    • 2019
  • Orthognathic surgery is designed to correct problems of the jaw and face and restore facial harmony. The limitations of orthognathic surgery occur at all steps of the surgical workflow: preoperative planning, simulation, and operation. Many studies have shown the accuracy and advantages of 3 dimensional computer-assisted program for orthognathic surgery. The purpose of this paper is to introduce the accuracy of the maxillary repositioning in patients who underwent orthognathic surgery using a 3 dimensional computer assisted surgery program. The reliability of computer guided orthognathic surgery using splint and surgical guide need to be improved further. The 3 dimensional computer assisted analysis seems to be more precise to interpret than two-dimensional analysis. High-precision planning of orthognathic surgery has predictable results. Three-dimensional computer assisted orthognathic surgery has the following advantages : planned surgical movement is possible, splints guide with CAD/CAM technology; and increase predictable results .Computer assisted simulation surgery ensures accuracy during surgery, thereby facilitating predictable results. It may provide solution that enables surgeon to perform planned surgery more accurately.

  • PDF