• Title/Summary/Keyword: Surgical simulation

Search Result 154, Processing Time 0.026 seconds

Unilateral intraoral vertical ramus osteotomy based on preoperative three-dimensional simulation surgery in a patient with facial asymmetry

  • Lee, Jae-Won;Kim, Moon-Key;Kang, Sang-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.1
    • /
    • pp.32-36
    • /
    • 2014
  • Preoperative surgical simulation in orthognathic surgery has progressed in recent years; the movement of the mandible can be anticipated through three-dimensional (3D) simulation surgery before the actual procedure. In this case report, the mandible was moved to the intended postoperative occlusion through preoperative surgical 3D simulation. Right-side condylar movement change was very slight in the surgical simulation, suggesting the possibility of mandibular surgery that included only left-side ramal osteotomy. This case report describes a patient with a mild asymmetric facial profile in which the mandibular menton had been deviated to the right and the lips canted down to the left. Before surgery, three-dimensional surgical simulation was used to evaluate and confirm a position for the condyle as well as the symmetrical postoperative state of the face. Facial asymmetry was resolved with minimal surgical treatment through unilateral intraoral vertical ramus osteotomy on the left side of the mandible. It would be a valuable complement for the reduction of the surgical treatment if one could decide with good predictability when an isolated intraoral vertical ramus osteotomy can be done without a compensatory osteotomy on the contralateral side.

Maxillary Positioning Device for Intermediate Waferless Orthognathic Surgery

  • Lee, Jung-woo
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.87-89
    • /
    • 2016
  • Le fort 1 osteotomy surgery is one of the most popular surgical methods for the treatment of patients with facial bone deformities. An intermediate wafer splint is used to fix the bone segment to the planned position, but there are many steps that can cause errors. To reduce these errors, we propose a method of using a surgical guide made with virtual surgical simulation.

Computer-Assisted Virtual Simulation and Surgical Treatment for Facial Asymmetry Induced by Fibrous Dysplasia

  • Lee, Jung-woo
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.33-35
    • /
    • 2016
  • Fibrous dysplasia(FD) is a disorder in which normal bone is replaced with pathologic tissue. When occurring in craniofacial regions, the zygomaticomaxillary complex is most commonly affected and this pathologic lesion results in facial asymmetry. and By using computer-assisted virtual simulation, precise maxillofacial contouring was achieved for harmonious facial morphology and the surgical procedure was simplified and the surgery brought satisfactory results in terms of both esthetics and functionality.

Current status of simulation training in plastic surgery residency programs: A review

  • Thomson, Jennifer E.;Poudrier, Grace;Stranix, John T.;Motosko, Catherine C.;Hazen, Alexes
    • Archives of Plastic Surgery
    • /
    • v.45 no.5
    • /
    • pp.395-402
    • /
    • 2018
  • Increased emphasis on competency-based learning modules and widespread departure from traditional models of Halstedian apprenticeship have made surgical simulation an increasingly appealing component of medical education. Surgical simulators are available in numerous modalities, including virtual, synthetic, animal, and non-living models. The ideal surgical simulator would facilitate the acquisition and refinement of surgical skills prior to clinical application, by mimicking the size, color, texture, recoil, and environment of the operating room. Simulation training has proven helpful for advancing specific surgical skills and techniques, aiding in early and late resident learning curves. In this review, the current applications and potential benefits of incorporating simulation-based surgical training into residency curriculum are explored in depth, specifically in the context of plastic surgery. Despite the prevalence of simulation-based training models, there is a paucity of research on integration into resident programs. Current curriculums emphasize the ability to identify anatomical landmarks and procedural steps through virtual simulation. Although transfer of these skills to the operating room is promising, careful attention must be paid to mastery versus memorization. In the authors' opinions, curriculums should involve step-wise employment of diverse models in different stages of training to assess milestones. To date, the simulation of tactile experience that is reminiscent of real-time clinical scenarios remains challenging, and a sophisticated model has yet to be established.

Corrective Surgery Using Virtual Surgical Simulation and a Three-Dimensional Printed Osteotomy Guide: A Case Report (가상 수술 시뮬레이션과 3차원 프린팅 절골술 가이드를 이용한 교정 수술: 증례 보고)

  • Gi Won Choi;Gi Jun Shin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.3
    • /
    • pp.112-116
    • /
    • 2023
  • A 74-year-old female patient, who underwent surgery for a left distal tibiofibular fracture 40 years earlier, visited the hospital with an ankle varus deformity due to malunion. The patient complained of discomfort while walking due to the ankle and hindfoot varus deformity but did not complain of ankle pain. Therefore, correction using supramalleolar osteotomy was planned, and through virtual surgical simulation, it was predicted that a correction angle of 24° and an osteotomy gap open of 12 mm would be necessary. An osteotomy guide and an osteotomy gap block were made using three-dimensional (3D) printing to perform the osteotomy and correct the deformity according to the predicted goal. One year after surgery, it was observed that the ankle varus was corrected according to the surgical simulation, and the patient was able to walk comfortably. Thus, for correction of deformity, virtual surgical simulation and a 3D-printed osteotomy guide can be used to predict the target value for correction. This is useful for increasing the accuracy of correction of the deformity.

Maxillo-mandibular Contouring Surgery in Monostotic Fibrous Dysplasia Patients using Simulation Surgery

  • Kim, Dong-Young;You, Myoung-Sang;Ah, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.60-63
    • /
    • 2016
  • Fibrous dysplasia is quite a rare disease usually involving maxilla and mandible. Because of its benign clinical course, conservative contouring surgery has been recommended for facial deformity. 3D rapid prototype (RP) model gives a lot of informations before operation such as depth of drilling, area of resection and important anatomic structure. The purpose of this study was to report maxilla-mandibular contouring surgery in fibrous dysplasia patients. A total of 14 consecutive patients were included for surgical and esthetic evaluation. Among 14 patients, RP model study was performed in two patients with severe facial deformity. The other patients underwent contouring surgery under conventional methods. Surgical evaluation was performed with computed tomography scan before and after operation. Surgical resection was successful and patients were satisfied with the surgical results.

Three-Dimensional Printing of Congenital Heart Disease Models for Cardiac Surgery Simulation: Evaluation of Surgical Skill Improvement among Inexperienced Cardiothoracic Surgeons

  • Ju Gang Nam;Whal Lee;Baren Jeong;Eun-Ah Park;Ji Yeon Lim;Yujin Kwak;Hong-Gook Lim
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.706-713
    • /
    • 2021
  • Objective: To evaluate the impact of surgical simulation training using a three-dimensional (3D)-printed model of tetralogy of Fallot (TOF) on surgical skill development. Materials and Methods: A life-size congenital heart disease model was printed using a Stratasys Object500 Connex2 printer from preoperative electrocardiography-gated CT scans of a 6-month-old patient with TOF with complex pulmonary stenosis. Eleven cardiothoracic surgeons independently evaluated the suitability of four 3D-printed models using composite Tango 27, 40, 50, and 60 in terms of palpation, resistance, extensibility, gap, cut-through ability, and reusability of. Among these, Tango 27 was selected as the final model. Six attendees (two junior cardiothoracic surgery residents, two senior residents, and two clinical fellows) independently performed simulation surgeries three times each. Surgical proficiency was evaluated by an experienced cardiothoracic surgeon on a 1-10 scale for each of the 10 surgical procedures. The times required for each surgical procedure were also measured. Results: In the simulation surgeries, six surgeons required a median of 34.4 (range 32.5-43.5) and 21.4 (17.9-192.7) minutes to apply the ventricular septal defect (VSD) and right ventricular outflow tract (RVOT) patches, respectively, on their first simulation surgery. These times had significantly reduced to 17.3 (16.2-29.5) and 13.6 (10.3-30.0) minutes, respectively, in the third simulation surgery (p = 0.03 and p = 0.01, respectively). The decreases in the median patch appliance time among the six surgeons were 16.2 (range 13.6-17.7) and 8.0 (1.8-170.3) minutes for the VSD and RVOT patches, respectively. Summing the scores for the 10 procedures showed that the attendees scored an average of 28.58 ± 7.89 points on the first simulation surgery and improved their average score to 67.33 ± 15.10 on the third simulation surgery (p = 0.008). Conclusion: Inexperienced cardiothoracic surgeons improved their performance in terms of surgical proficiency and operation time during the experience of three simulation surgeries using a 3D-printed TOF model using Tango 27 composite.

Genioplasty using a simple CAD/CAM (computer-aided design and computer-aided manufacturing) surgical guide

  • Lim, Se-Ho;Kim, Moon-Key;Kang, Sang-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.44.1-44.6
    • /
    • 2015
  • Background: The present study introduces the design and fabrication of a simple surgical guide with which to perform genioplasty. Methods: A three-dimensional reconstruction of the patient's cranio-maxilla region was built, with a dentofacial skeletal model, then derived from CT DICOM data. A surgical simulation was performed on the maxilla and mandible, using three-dimensional cephalometry. We then simulated a full genioplasty, in silico, using the three-dimensional (3D) model of the mandible, according to the final surgical treatment plan. The simulation allowed us to design a surgical guide for genioplasty, which was then computer-rendered and 3D-printed. The manufactured surgical device was ultimately used in an actual genioplasty to guide the osteotomy and to move the cut bone segment to the intended location. Results: We successfully performed the osteotomy, as planned during a genioplasty, using the computer-aided design and computer-aided manufacturing (CAD/CAM) surgical guide that we initially designed and tested using simulated surgery. Conclusions: The surgical guide that we developed proved to be a simple and practical tool with which to assist the surgeon in accurately cutting and removing bone segments, during a genioplasty surgery, as preoperatively planned during 3D surgical simulations.

A Prototype of Telepresent Surgical Simulation System (원격 모의 수술 시스템 프로토타입)

  • 남상아
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.31-44
    • /
    • 1997
  • In medical applications, the cooperation work using computer network is in the spotlight as next generation technology, because it offers sharing of equipments, knowledge of specialists, and data and surmounts the limitations of geographical position and time. We present a prototype of telepresent surgical simulation system in this treatise. It is a telemedicine system using volume image, which is reconstructed from radiological images such as MRI and CT. It is used as a tool for surgical simulation among telepresent doctors. It provides the functions of conference control, volume reconstruction and manipulation, and multimedia database management among one server and multi-clients through high-speed network. It is implemented on Unix workstation using X-windows and C language, TCP/IP protocol and UNiSQL as DBMS.

  • PDF