• Title/Summary/Keyword: Surge Margin

Search Result 38, Processing Time 0.026 seconds

Surge Control of Turbofan Engine Compressor with the Variable Inlet Guide Vane (가변 안내익을 이용한 터보팬 엔진 압축기의 서지 제어)

  • Bae, Kyoungwook;Kim, Sangjo;Han, Dongin;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.539-546
    • /
    • 2013
  • Surge phenomenon can be occurred in a compressor when compressor performance of turbofan engine for an aircraft is changed considerably in a short time on the cases like take-off phase and changing of RPM from idle to maximum, because performance of aircraft engine is changed suddenly. This study is aimed to avoid surge in a compressor. Dynamic simulation in a compressor is modeled by simulink in specific condition. Fuel flow is control input, rpm and air mass flow are expressed in terms of transfer function. Surge margin is obtained by using compressor performance map from NPSS. VIGV(Variable Inlet Guide Vane) is controlled by PD controller with difference between surge margin and reference. Finally this paper verifies IGV can prevent surge phenomenon in a compressor.

A Fuel Spiking Test for the Surge Margin Measurement in Gas Turbine Engines

  • Lee, Jinkun;Kim, Chuntaek;Sooseok Yang;Lee, Daesung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.380-384
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal was superimposed on the engine controller demand and the mixed signals were used to control a fuel line servo-valve. For the superimposition, a subsystem composed of a fuel controller and a function generator was used. During the fuel spiking test, the original scheduled fuel signals and the modified signals were compared to guarantee the consistency excluding the spiking signals. The spiking signals were carefully selected to maintain the engine speed constant. The fuel spiking effects were checked by three dynamic pressure sensors. Sensors were placed before the servo-valve, after the servo-valve, and after the compressor location, respectively. The modulations of the spiking signal duration and fuel flow rate were examined to make the- operating point approach the surge region. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the real engine test, fuel spiking signals with 25~50 ㎳ of spiking signal time and 17~46 % of base fuel flow rate condition were used. The dithering signal was 5~6 ㎃ at 490 Hz. The test results showed good agreement between the fuel spiking signals and the fuel line pressure signals. Also, the compressor discharge pressure signals showed fuel spiking effects and the changes of the operating point on the compressor characteristic map could be traced.

  • PDF

Study of the Flow in Centrifugal Compressor

  • Xu, Cheng;Amano, Ryoichi Samuel
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.260-270
    • /
    • 2010
  • Reducing the losses of the tip clearance flow is one of the keys in an unshrouded centrifugal compressor design and development because tip clearances are large in relation to the span of the blades and also centrifugal compressors produce a sufficiently large pressure rise in single stage. This problem is more acute for a low flow high-pressure ratio impeller design. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range low flow coefficient centrifugal compressor is a great challenge. This paper describes a recent development of high efficiency and wide surge margin low flow coefficient centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in the centrifugal compressor design. The compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A patented three-dimensional low solidity diffuser design method is used and applied to this design. The compressor test results demonstrated to be successful to extend the low solidity diffusers to high-pressure ratio compressor. The compressor stage performance showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The test results are in good agreement with the design.

A Study on Full and Part Load Operations of a Biogas-fired Gas Turbine Combined Heat and Power System (바이오 가스를 사용하는 가스터빈 열병합 시스템의 전부하 및 부분부하 운전특성 해석)

  • Kang, Do-Won;Lee, Jong-Jun;Kim, Tong-Seop;Hur, Kwang-Beom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2011
  • This study analyzed the influence of firing biogas on the performance and operation of a gas turbine combined heat and power (CHP) system. A reference CHP system designed with natural gas fuel was set up and off-design simulation was made to investigate the impact of firing biogas in the system. Changes in critical operating parameters such as compressor surge margin and turbine blade temperature caused by firing biogas were examined, and a couple of operating schemes to mitigate their changes were simulated. Part load operation of the biogas-fired system was compared with that of natural-gas fired system, and it was found that as long as the two system produce the same electric power output, they exhibit nearly the same heat recovery.

Numerical Investigation of Ring Groove Effect in a Centrifugal Compressor (원심압축기의 링 그루브 효과에 관한 수치해석적 연구)

  • Park, Chi-Yong;Choi, Young-Seok;Lee, Kyoung-Yong;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • This paper presents a numerical study of casing treatments on a centrifugal compressor stage to improve stability and the surge margin. High efficiency, a high pressure ratio, and a wide operating range are required for a high performance centrifugal compressor. In the present study, a ring groove arrangement was applied to the transonic centrifugal compressor. According to the numerical analysis using a commercial code ANSYS-CFX, the unstable phenomena limiting the range of the centrifugal compressors were compared with and without a ring groove. Although the ring groove decreased the efficiency, but increased the operating range by suppressing a flow separation at the leading-edge of the impeller especially near shroud part. Newly designed ring groove arrangement improved the compressor performance and increased the operating range of the compressor.

Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation (증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로)

  • Kang, Soo-Young;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

Experimental Study on the Effect of Inlet Guide Vane of Instabilities of a Centrifugal Compressor (입구 안내익 영향으로 인한 원심 압축기 불안정성 연구)

  • Lim, Byeung-Jun;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.23-31
    • /
    • 2004
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with an adjustable inlet guide vane has been performed with varying guide vane angles. The test was conducted at the design speed of 20,800 rpm for 6 guide vane angles : $-30^{\circ},\;-20^{\circ},\;10^{\circ},\;0^{\circ},\;10^{\circ},\;20^{\circ},\;30^{\circ}$. Unsteady pressures were measured using high-frequency pressure transducers at the inducer to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by inlet guide vane angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a adjustable inlet guide vane.

A Study on Applicability of Stainless Steel Type 316N to the PZR Surge-line of OPR1000 and APR1400 (Type 316N 스테인리스강의 OPR1000 및 APR1400 가압기 밀림관 적용성에 대한 연구)

  • Yoo, One;Jung, Sung-Hoon;Park, Sung-Ho;Sohn, Gap-Heon;Lee, Bong-Sang;Kim, Min-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.287-292
    • /
    • 2008
  • The applicability of stainless steel type 316N to the PZR surge-lines of OPR1000 and APR1400 is investigated. So far, strainless steel type 347 has been used for the OPR1000 surge-lines. The degree of improvement in the leak-before-break(LBB) and component design margin is evaluated when stainless steel type 347 is substituted by type 316N. For the study, the tensile and J-R tests on type 316N and type 347 stainless steels were performed at 316 and the microstructure of both types was examined. Stainless steel type 316N shows the higher values on the stress-strain curves, J-R curves and stress intensity, Sm, compared to those of type 347. Therefore, stainless steel type 316N ensures the higher LBB and component design margins. As a result, this study shows that stainless steel type 316N could substitute type 347 for the surge-lines of OPR1000 and APR1400.

  • PDF

A Study on the Instabilities of the Centrifugal Compressor with Variable Diffuser (가변 디퓨저를 장착한 원심 압축기 불안정성 연구)

  • Cha, Bong-Jun;Im, Byeong-Jun;Yang, Su-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1123-1131
    • /
    • 2002
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with a cambered variable diffuser has been performed with varying diffuser vane angles. The test was conducted at the design speed of 20,800 rpm and the 80% design speed of 16,640 rpm for 5 diffuser angles : 65$^{\circ}$, 70$^{\circ}$, 75$^{\circ}$, 77.5$^{\circ}$, 80$^{\circ}$ The steady performance test results showed that choking mass flow rate decreases and total pressure ratio increases with a narrowed surge margin as the diffuser vane angle increases. Unsteady pressures were measured using high-frequency pressure transducers at the inducer and the diffuser throat to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by diffuser angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a variable diffuser.

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 2 - Variations in Engine's Operation and Performance Caused by Performance Degradation of Compressor and Turbine (마이크로 가스터빈 설계 및 운전 성능 분석 : 제2부 - 압축기와 터빈 성능저하에 의한 엔진 운전 및 성능변화)

  • Kim, Jeong Ho;Kim, Min Jae;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.30-35
    • /
    • 2015
  • This study analyzed the variations in the performance and operation of a 200 kW class micro gas turbine according to performance degradation of compressor and turbine. An in-house code, developed by the present authors and presented in the first part of these series of papers, were used for the analysis. The degradation of compressor and turbine were simulated by modifications in the their performance maps: mass flow rate, pressure ratio and efficiency were decreased from the reference values. Firstly, the variations in the operating conditions (air flow rate, pressure ratio) were predicted for the full load condition. Then, the same analysis were performed for a wide partial load operating range. The change in engine's performance (power output and efficiency) due to the component degradation was predicted. In addition, the change in the compressor surge margin, which is an important indicator for safe engine operation, was evaluated.