• Title/Summary/Keyword: Surfactant protein A

Search Result 81, Processing Time 0.028 seconds

The DeveloDment of PaDain which is Extremely Stable to Negative Ionic Environment by Directed Molecular Evolution (방향성 분자진화에 의한 음이온에 안정한 Papain 개발)

  • Kang, Whan-Koo;Hwang, Sun-Duk;Kim, Hyoung-Sik;Jeung, Jong-Sik;Lee, Bheong-Uk
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.394-400
    • /
    • 2006
  • When the papain, which is a sort of Cystein protease, is applied to the outer skin, it decomposes the protein which forms the peeled outer skin and speeds up metabolism. Therefore, it is one of the most important cosmetics compositic which keeps the function of skin normal. When the papain is used in cosmetics with surfactant, the activity of papain is reduced rapidly. In this study, the modified papain with extreme stability negative ionic environment was developed by directed evolution

Heavy-Metal Adsorption by Recombinant Saccharomyces cerevisiae Harboring Multiple Copies of the CUP1 Gene (구리흡착 단백질 유전자를 함유하는 재조합 효모의 중금속 흡착)

  • 서진호;박상옥;김명동;한기철;전영석;안장우;한남수
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.38-43
    • /
    • 2002
  • Characteristics of cell growth and heavymetal adsorption by recombinant Saccharomyus cerevisiae strains harboring multiple copies of the CUP1 gene encoding metallothione (MT) protein were studied in batch cultures. Recombinant S. cerevisiae strains harboring multiple copies of the CUP1 gene were superior to the host and wild-type yeast strains in terms of cell growth and heavy metal removal, indicating that the copy number of the CUP1 gene for MT expression played an important role in the adsorption of heavy metals. It was suggested that the CUP1 promoter for the MT expression is induced by manganese and zinc as well as copper An optimum copper concentration for MT expression and concomitant adsorption of heavy metals by recombinant S. cerevisiae was found to be 0.31 mM. A nonionic surfactant Triton X-100 enhanced cell growth by 17.7% and removal of zinc by 6.1% compared with the control case.

Anti-inflammatory Effects of Inhalation of Injured Starfish Extracts on Formaldehyde Exposure (손상된 불가사리 추출물 흡입이 포름알데히드 노출에 의한 항염증 작용에 미치는 효과)

  • Hwang, Kyung Hee;Chang, Su Chan;Park, Jong Seok;Wahid, Fazli;Kim, You Young
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.501-509
    • /
    • 2013
  • Formaldehyde (FA) is widely used in industries, and it is an indoor and outdoor pollutant. Exposure to FA may cause inflammation and respiratory oxidative stress. Studies have demonstrated that FA can cause cancer in animal models. During the regeneration process of injured starfish (Asterina pectinifera), several changes have been observed in the expression of cytokines. In particular, higher TGF-${\beta}1$ expression has been detected in arm cut starfish extract after eight days. The current study was designed to elucidate the in-vitro and the in-vivo pharmacological effects of starfish extract on FA exposure. We investigated the protective effects of intact starfish extract and arm cut starfish extract on an IMR-90 cell line and on mouse lung injury in response to FA exposure. In the presence of FA, inhalation of the arm cut starfish extract was associated with more promising cell proliferation, TNF-${\alpha}$, NF-${\kappa}B$ decrement, and $I{\kappa}-B{\alpha}$ increment. In the experimental group, the pulmonary structure of the arm cut starfish extract-treated group in the presence of FA exposure was similar to the control group, whereas the FA exposure group showed damage to the pulmonary structure. Moreover, the arm cut starfish extracts was more effective than the intact starfish extracts in terms of the expression of TNF-${\alpha}$, NF-${\kappa}B$, $I{\kappa}-B{\alpha}$, and surfactant protein A. The results obtained in this study demonstrate that arm cut starfish extracts are more effective in protecting pulmonary structure and function against FA exposure than intact starfish extracts.

Enhanced Production of hCTLA4Ig through Increased Permeability in Transgenic Rice Cell Cultures (형질전환 벼 현탁세포 배양에서 투과성 증진을 통한 hCTLA4Ig의 생산성 증대)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Lim, Jung-Ae;Park, Hye-Rim;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • In this system, rice cells were genetically modified to express human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) using RAmy3D promoter induced by sugar depletion. Even though the target protein fused with signal sequence peptide, plant cell wall can be a barrier against secretion of recombinant proteins. Therefore, hCTLA4Ig can be trapped inside cell wall or remained in intracellular space. In this study, to enhance the secretion of hCTLA4Ig from cytoplasm and cell walls into the medium, permeabilizing agents, such as dimethyl sulfoxide (DMSO), Triton X-100 and Tween 20, were applied in transgenic rice cell cultures. When 0.5% (v/v) of DMSO was added in sugar-free medium, intracellullar hCTLA4Ig was increased, on the other hand, the secreted extracellular hCTLA4Ig was lower than that of control. DMSO did not give permeable effects on transgenic rice cell cultures. And Triton X-100 was toxic to rice cells and also did not give enhancing permeability of cells. When 0.05% (v/v) Tween 20 was added in rice cell cultures, however, intracellular hCTLA4Ig was lower than that of control cultures. And the maximum 44.76 mg/L hCTLA4Ig was produced for 10 days after induction, which was 1.4-fold increase compared to that of control cultures. Especially, Tween 20 at 0.05% (v/v) showed the positive effect on the secretion of hCTLA4Ig though the decrease of intracellular hCTLA4Ig. Also, Tween 20 as a non-toxic surfactant did not affect the cell growth, cell viability and protease activity. In conclusion, secretion of hCTLA4Ig could be increased by enhancing permeability of cells regardless of the cell growth, cell viability and protease activity.

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.

Development of Lateral Flow Immunofluorescence Assay Applicable to Lung Cancer (폐암 진단에 적용 가능한 측면 유동 면역 형광 분석법 개발)

  • Supianto, Mulya;Lim, Jungmin;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.173-178
    • /
    • 2022
  • A lateral flow immunoassay (LFIA) method using carbon nanodot@silica as a signaling material was developed for analyzing the concentration of retinol-binding protein 4 (RBP4), one of the lung cancer biomarkers. Instead of antibodies mainly used as bioreceptors in nitrocellulose membranes in LFIA for protein detection, aptamers that are more economical, easy to store for a long time, and have strong affinities toward specific target proteins were used. A 5' terminal of biotin-modified aptamer specific to RBP4 was first reacted with neutravidin followed by spraying the mixture on the membrane in order to immobilize the aptamer in a porous membrane by the strong binding affinity between biotin and neutravidin. Carbon nanodot@silica nanoparticles with blue fluorescent signal covalently conjugated to the RBP4 antibody, and RBP4 were injected in a lateral flow manner on to the surface bound aptamer to form a sandwich complex. Surfactant concentrations, ionic strength, and additional blocking reagents were added to the running buffer solution to optimize the fluorescent signal off from the sandwich complex which was correlated to the concentration of RBP4. A 10 mM Tris (pH 7.4) running buffer containing 150 mM NaCl and 0.05% Tween-20 with 0.6 M ethanolamine as a blocking agent showed the optimum assay condition for carbon nanodot@silica-based LFIA. The results indicate that an aptamer, more economical and easier to store for a long time can be used as an alternative immobilizing probe for antibody in a LFIA device which can be used as a point-of-care diagnosis kit for lung cancer diseases.

Solubilization of BSA into AOT Reverse Micelles Using the Phase-Transfer Method: Effects of pH and Salts (상 접촉법을 이용한 BSA의 AOT 역미셀으로 가용화: pH와 염의 영향)

  • 노선균;강춘형
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Bovine serum albumin(BSA) was solubilized into the reverse micellar phase consisting of sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and isooctane using the phase transfer method. Of particular interest in this study were the effects of pH and the added salt type and concentration on the solubilization efficiency. When univalent or divalent salts such as KCl, NaCl, $MgCl_2$, or $CaCl_2$ were added to the aqueous phase at a concentration of 0.1 M, maximum solubilization efficiency was attained at a pH ranging from 5 to 7, depending on the added salt type. Increased salt concentration up to 1 M resulted in an increased solubilization efficiency for $CaCl_2$ and NaCl, while the addition of $MgCl_2$ beyond 0.1 M showed an anomalous trend. Further, it was noteworthy that too a large extent the protein precipitated in the interface between the organic and aqueous phases at lower pHs and lower salt concentrations. The size of the reverse micelle water pool was estimated by measuring the molar ratio of the surfactant to the water, $W_0$. Irrespective of pH in the aqueous phase, the resulting value of $W_0$ was almost constant, eg., 20 for $MgCl_2$ . However, the value of $W_0$ decreased with increased salt concentration in the cases of KCl and $CaCl_2$.

  • PDF

Effect of Various Additives on the Production of Recombinant HBsAg during Methanol Induction in Pichia pastoris (Pichia pastoris에서 메탄올 유도시 첨가물이 재조합 HBsAg 생산에 미치는 영향)

  • Lee, Kyoung-Hoon;Lim, Sang-Min;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.260-266
    • /
    • 2006
  • Methanol induction conditions with various additives for the enhanced production of recombinant hepatitis B surface antigen(HBsAg) were investigated in Pichia pastoris, which can utilize methanol as a carbon source and produce recombinant proteins under the control of strong, tightly-regulated alcohol oxidase(AOX) promoter. The presence of non-methanol carbon sources such as glycerol and glucose fully repressed the expression of AOX promoter. Various additives were tested to improve the production of recombinant protein and it was found that sorbitol could be a good carbon source during methanol induction period. An optimized concentration of amino acid mixture enhanced the production of HBsAg significantly. Pluronic F-68, a non-ionic surfactant, also improved the production of HBsAg without inhibiting cell growth. Addition of oleic acid at 0.01%(v/v) during the induction period showed positive effect on the production of HBsAg. Finally, 1.2%(v/v) of trace salts enhanced the production of HBsAg 1.9 times compared to that of control culture.

Biodistribution of [S-35] Labeled Antisense Oligodeoxynucleotides Increased Tumor Targeting With Microsphere Coinjection

  • Choe, Jae-Gol;Park, Gil-Hong;Claudio Nastruzzi;Yoon S. Cho-Chung;Kim, Meyoung-Kon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.65-69
    • /
    • 2002
  • To elucidate the effect of microsphere coinjection on the administration of oligodeoxynucleotides (ODN), we have investigated biodistribution of [S-35]-labeled antisense ODN targeted to cAMP-dependent protein kinase (PKA) RI-$\alpha$ subunit in nude mice xenografted with WiDr (human colon cancer, ATCC CCL218). The strategy of using microsphere has been proposed for cancer treatment as a carrier of therapeutic ODN so that it could offer an advantage with respect to maintaining constant ODN levels in blood and obtaining higher therapeutic ODN concentration at tumor sites. Comparative biodistribution studies were performed in nude mice (female, 20 g of body weight, n = 4-6) xenografted with WiDr cancer cells, when 0.1 $\mu$Ci (specific activity, 2.94 mCi/$\mu$mole) of [S-35]-labeled RI-$\alpha$ antisense ODN was injected alone or with microsphere (PLG-18, polylactic copolymer with cationic surfactant DDAB18). Peak tumor uptake of [S-35]-labeled ODN was significantly increased from 17.7% (at 6 h) of injected dose per gram of tissue (ID/g) to 42.5% (at 24 h) ID/g when microsphere was coinjected with ODN. The different biodistribution in the kidney accumulation (e.g., 100.2% ID/g for ODN alone and 54.9%/ID/g for microshpere coinjection) may contribute to higher blood concentration (e.g., 21.5%ID/$m\ell$ for ODN alone and 37.5%ID/$m\ell$ for microsphere coinjection) of radiolabeled ODN. Of importance is the fact that the whole body retention of radioactivity increased with microsphere coinjection from 50.8%ID/g to 68.0%ID/g after 24-h of injection. This decreased kidney accumulation and increased whole body retention of [S-35]-labeled ODN resulted in a significant improvement of ODN targeting to the tumor site. In conclusion, the coinjection of microsphere appears to be an important carrier system in vehiculation of antisense oligonucleotide to the tumor tissue in vivo.

  • PDF

Investigating the potential exposure risk to indium compounds of target manufacturing workers through an analysis of biological specimens (생물학적 노출평가를 통한 타겟 제조업 근로자의 공정별 인듐 노출위험성 조사)

  • Won, Yong Lim;Choi, Yoon Jung;Choi, Sungyeul;Kim, Eun-A
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.263-271
    • /
    • 2014
  • Objectives: Along with the several cases of pulmonary disorders caused by exposure to indium that have been reported in Japan, China, and the United States, cases of Korean workers involved in processes that require handling of indium compounds with potential risk of exposure to indium compounds have also been reported. We performed biological monitoring for workers in various target manufacturing processes of indium, indium oxide, and indium tin oxide(ITO)/indium zinc oxide(IZO) in domestic factories. Materials: As biological exposure indices, we measured serum concentrations of indium using inductively coupled plasma mass spectrometry, and Krebs von den Lungen 6(KL-6) and surfactant protein D(SP-D) using enzyme-linked immunosorbent assays. We classified the ITO/IZO target manufacturing process into powdering, mixing, molding, sintering, polishing, bonding, and finishing. Results: The powdering process workers showed the highest serum indium level. The mixing and polishing process workers also showed high serum indium levels. In the powdering process, the mean indium serum concentration in the workers exceeded $3{\mu}g/L$, the reference value in Japan. Of the powdering, mixing, and polishing process workers, 83.3%, 50.0%, and 24.5%, respectively, had values exceeding the reference value in Japan. We suppose that the reason of the higher prevalence of high indium concentrations in powder processing workers was that most of the particles in the powdering process were respirable dust smaller than $10{\mu}m$. The mean KL-6 and SP-D concentrations were high in the powdering, mixing, and polishing process workers. Therefore, the workers in these processes who were at greater risk of exposure to indium powder were those who had higher serum levels of indium, as well as KL-6 and SP-D. We observed significant differences in serum indium, KL-6, and SP-D levels between the process groups. Conclusions: Five among the seven reported cases of "indium lung" in Japan involved polishing process workers. Polishing process workers in Korea also had high serum levels of indium, KL-6, and SP-D. The outcomes of this study can be used as essential bases for establishing biological monitoring measures for workers handling indium compounds, and for developing health-care guidelines and special medical surveillance in Korea.