• 제목/요약/키워드: Surface-etched structure

검색결과 111건 처리시간 0.026초

폴리머 장주기 패턴을 이용한 표면 식각된 격자 구조 기반의 장주기 광섬유 격자 (Long-Period Fiber Gratings Based on Periodically Surface-Etched Structure Imprinted by Using a Photoresist Polymer)

  • 박상오;권오장;한영근
    • 한국광학회지
    • /
    • 제22권1호
    • /
    • pp.1-4
    • /
    • 2011
  • 본 연구에서는 PR 폴리머 장주기 패턴을 이용하여 표면 식각된 격자 구조 기반 장주기 광섬유 격자 제조 방법을 제안하고 외부 장력 및 비틀림, 그리고 외부 굴절률에 대한 민감도를 측정하였다. 외부 장력을 인가함에 따라 특정파장에서 광결합 계수 변화에 의한 공진파장이 형성되고 투과도가 감소하게 된다. 손실이 생기게 되고 민감도는 $-0.033\;dB/\mu\varepsilon$로 측정되었다. 비틀림과 외부 굴절률에 변화에 대해서도 표면 식각된 격자 구조 기반 장주기 광섬유 격자의 투과 특성이 변하며 민감도는 각각 -1.30 nm m/rad, -31.33 nm/RIU로 측정되었다.

Effect of Chemically Etched Surface Microstructure on Tribological Behaviors

  • Hye-Min Kwon;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.84-90
    • /
    • 2024
  • This study investigates the effect of the surface microstructure on the tribological characteristics of glass substrates. Chemical etching using hydrofluoric acid and ammonium hydrogen fluoride was employed to create controlled asperity structures on glass surfaces. By varying the etching time from 10 to 50 min, different surface morphologies were obtained and characterized using optical microscopy, surface roughness measurements, and water contact angle analysis. Friction tests were performed using a stainless steel ball as the counter surface to evaluate the tribological behavior of the etched specimens. The results showed that the specimen etched for 20 min exhibited the lowest and most stable friction coefficient, which was attributed to the formation of a uniform and dense asperity structure that effectively reduced the stress concentration and wear at the contact interface. In contrast, specimens etched for shorter (10 min) or longer (30-50 min) durations displayed higher friction coefficients and accelerated wear owing to nonuniform asperity structures that led to local stress concentration. Optical microscopy of the wear tracks further confirmed the superior wear resistance of the 20-minute etched specimen. These findings highlight the importance of optimizing the etching process parameters to achieve the desired surface morphology for enhanced tribological performance, suggesting the potential of chemical etching as a surface modification technique for various materials in tribological applications.

THE EFFECTS OF SURFACE CONTAMINATION ON THE SHEAR BOND STRENGTH OF COMPOMER

  • Heo, Jeong-Moo;Lee, Su-Jong;Im, Mi-Kyung
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2001년도 추계학술대회(제116회) 및 13회 Workshop 제3회 한ㆍ일 치과보존학회 공동학술대회 초록집
    • /
    • pp.577-577
    • /
    • 2001
  • The lastest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not blown dry but left moist before application of the bonding primer. Ideally, the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during preparation of a restoration. The aim of this study was to evaluate the effect of contamination by hem-ostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were cleaned from soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive paper on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows: Group 1 : Dentin surface was not etched and not contaminated by hemostatic agents. Group2 : Dentin surface was not etched but was contaminated by Astringedent (Ultradent product Inc., Utah, U.S.A.). Group3 : Dentin surface was not etched but was contaminated by Bosmin (Jeil Phann, Korea.). Group4 : Dentin surface was not etched but was contaminated by Epri-dent (Epr Industries, NJ, U.S.A.). Group5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6 : Dentin surface was etched and contaminated by Astringedent. Group7 : Dentin surface was etched and contaminated by Bosmin. Group8 : Dentin surface was etched and contaminated by Epri-dent. Group9 : Dentin surface was contaminated by Astringedent. The contaminated surface was rinsed by water and dried by compressed air. Group10 : Dentin surface was contaminated by Bosmin. The contaminated surface was rinsed by water aud dried by compresfed air. Group 11 : Dentin surface was contaminated by Epri-dent. The contaminated surface was rinsed by water and dried by compresfed air. After surface conditioning, F2000 was applicated on the conditoned dentin surface. The teeth were thermocycled in distilled water at $5^{\circ}C\;and\;55^{\circ}C$ for 1000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the lmife-edge shearing rod of the Universal testing machine(Zwick 020, Germany) running at a cross head speed of 1.0mmimin. There were no significant differences in shear bond strength between groups 1 and group 3 and 4, but group 2 showed significant decrease in shear bond strength compared with group 1. There were no significant differences in shear bond strength between group 5 and group 7 and 8, but group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

  • PDF

감도특성 향상을 위한 국부적 표면식각 다이아프램 구조 연구 (The Diaphragm Structure Using the Local Surface Etching for the Improvement of Sensitivity Characteristics)

  • 이곤재;오동환;이종홍;김성진
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.309-315
    • /
    • 2004
  • In the pressure sensor, about below 20 kPa, the center boss diaphragm structure is generally used, but it is hard to obtain the high sensitivity because the center boss structure is limited at the thickness and size of diaphragm with chip size. Therefore, this paper suggests that the Center boss structure has surface etched diaphragm using a stress concentration to improve the sensitivity. We carried out the simulation and fabrication applied new diaphragm design. In the result, the sensitivity is improved to 60% without the change of non-linearity (0.14%FS). So, the Center boss of surface etched diaphragm can be applied for the high sensitivity in the low-pressure sensor.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

An Isothermal Temperature Source with a Large Surface Area using the Metal-Etched Microwick-Inserted Vapor Chamber Heat Spreader

  • Go, Jeong-Sang;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.681-688
    • /
    • 2004
  • For use of the thermal cycle of the biochemical fluid sample, the isothermal temperature source with a large surface area was designed, fabricated and its thermal characterization was experimentally evaluated. The comprehensive overview of the technology trend on the temperature control devices was detailed. The large surface area isothermal temperature source was realized by using the vapor chamber heat spreader. The cost-effectiveness and simple manufacturing process were achieved by using the metal-etched wick structure. The temperature distribution was quantitatively investigated by using IR temperature imaging system at equivalent temperatures to the PCR thermal cycle. The standard deviation was measured to be within 0.7$^{\circ}C$ for each temperature cycle. This concludes that the presented isothermal temperature source enables no temperature gradient inside bio-sample fluid. Furthermore it can be applied to the cooling of the electronic devices due to its slimness and low thermal spreading resistance.

SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode

  • Um, Ji Hyun;Kim, Hyunwoo;Cho, Yong-Hun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권1호
    • /
    • pp.92-98
    • /
    • 2020
  • SnO2-based high-capacity anode materials are attractive candidate for the next-generation high-performance lithium-ion batteries since the theoretical capacity of SnO2 can be ideally extended from 781 to 1494 mAh g-1. Here 3D etched Cu foam is applied as a current collector for electron path and simultaneously a substrate for the SnO2 coating, for developing an integrated electrode structure. We fabricate the 3D etched Cu foam through an auto-catalytic electroless plating method, and then coat the SnO2 onto the self-supporting substrate through a simple sol-gel method. The catalytic dissolution of Cu metal makes secondary pores of both several micrometers and several tens of micrometers at the surface of Cu foam strut, besides main channel-like interconnected pores. Especially, the additional surface pores on etched Cu foam are intended for penetrating the individual strut of Cu foam, and thereby increasing the surface area for SnO2 coating by using even the internal of Cu foam. The increased areal capacity with high structural integrity upon cycling is demonstrated in the SnO2-coated 3D etched Cu foam. This study not only prepares the etched Cu foam using the spontaneous chemical reactions but also demonstrates the potential for electroless plating method about surface modification on various metal substrates.

LED적용을 위한 AZO 투명전도 박막의 표면 texture 구조분석 (Analysis of the Texture Structure of Transparent Conductive AZO thin films for LED Applications.)

  • 김경민;김덕규;오상현;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.103-104
    • /
    • 2006
  • Transparent conductive oxide (TCO) are necessary as front electrode for increased efficiency of LED. In our paper, transparent conducting alminum-doped Zinc oxide films (AZO) were prepared by rf magnetron sputtering on glass (corning 1737) substrate, were then annealed at temperature $400^{\circ}C$ for 2hr. The smooth AZO films were etched in diluted HCL (0.5%) to examine the surface morphology properties as a variation of the time. The surface morphology of AZO films increased as a time. We observed texture structure of AZO thin film etched for 1min.

  • PDF

전기화학적으로 에칭된 다공성 스테인리스 스틸 표면의 오일 보존 실험 및 성능 평가 (Oil Retention Experiments and Evaluations for Electrochemically Etched Porous Stainless Steel Surface)

  • 이찬;김애리;김준원
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1171-1176
    • /
    • 2014
  • Oil retention experiments were conducted and the performance was characterized for electrochemically etched stainless steels. The 304 stainless steels were electrochemically etched in dilute Aqua Regia to form porous structures. The structures were also hierarchical, which provides very large area for oils to adhere. Also the structures had deep valleys, which act as reservoir and are able to resist against oil-detaching forces. Several commercial oils were dispensed to characterize oil retention properties via rotating disk experiment method. The results showed that the etched surfaces have superior oil retention performance in every conditions. Also the retention enhancement ratio went particularly higher as the environments became more severe. This surface modification technique could be applied to other steel products for pretreatments of various kinds of coatings.

The Optimum Condition of Anisotropic Bulk(10) Si Etching with KOH for High Selectivity and Low Surface Roughness

  • Lim, Hyung-Teak;Kim, Yong-Kweon;Lee, Seung-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.108-113
    • /
    • 1997
  • In this paper, the optimum condition of (110) Si etching with the potassium hydroxide(KOH) etchant is presented. Although several researches on (110) Si anisotropic etching have been studied, there has been lack of effects of mask quality and etching conditions on the selectivity and the roughness o the etched surface. Three kinds of masks (film, emulsion and E-beam mask) were used in order to verify the effect of etching properties. Anisotropic bulk etching depends on the crystalline orientation and the concentration and temperature of the etchant. In order to investigate the effect of etching conditions on selectivity and the roughness of the etched surface, the concentration of the etchant was varied from 35 to 45 per cent in weight with increments by 5 per cent and the temperature was changed from 70 to 90$^{\circ}C$ with increments by 10$^{\circ}C$. The combination of the temperature of 70$^{\circ}C$ and the concentration of 40wt.% was found to be the optimum etching condition for high selectivity. Etched surfaces show minimum surfaces show minimum surface roughness at a temperature of 80$^{\circ}C$ and a concentation of 40wt.%. Comb structures with various comb widths were fabricated and the lengths of the combs wree measured with several etching time durations. A micro comb structure 525$\mu\textrm{m}$ high was fabricated for MEMS application.

  • PDF