• Title/Summary/Keyword: Surface-applied

Search Result 12,279, Processing Time 0.049 seconds

Effects of Soil Crusting and Hardening during Drying after Artificial Rainfall on Seedling Emergence of Rice and Barnyardgrass (강우처리후 토양건조에 따른 피막형성 및 경도변화가 벼와 피의 출아에 미치는 영향)

  • Lee, Byun-Woo;Kwon, Yong-Woong;Myung, Eul-Jae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.131-138
    • /
    • 1996
  • Soil crusting and hardening as a result of drying after rainfall were examined in relation to seedling emergence by employing five rice varieties (Italiconaverneco, Dadazo, and Galsaekggarakshare, Dongjinbyeo and Sumjinbyeo) and two barnyardgrass species (E. crus-gallj var. oryzjcola and E. crus-galli var. praticola). Sandy loam, loam, and silty loam soils were used. The artificial rainfall of 0, 20 and 40mm were applied after sowing and covering with 4cm soil. Air temperature and solar radiation averaged over 9 days after seeding was 31.3$^{\circ}C$ and 16.9MJ /m$^2$, respectively. Soil strength increased rapidly by drying after artificial rainfall, being greater in soils with greater amount of clay and artificial rainfall. Soil crust was formed on the surface with artificial rainfall in all soils tested. However, soil crust was exfoliated in silty loam and loam soil, and lifted as seedlings emerge. Seedling emergence of rice varieties was decreased by rainfall treatments. Sumjinbyeo and Dongjinbyeo showed much poorer seedling emergence especially in sandy loam soil than the other varieties. Poor seedling emergence of these varieties might have been caused by delayed seedling emergence which had made them expose to greater soil strength. Seedling emergence of barnyardgrasses showed no differences among soil textures and rainfall treatments, because they emerged rapidly before soil crusting and hardening were proceeded enough to hamper seedling emergence. Seedling emergence of Sumjinbyeo and Dongjinbyeo decreased with increasing soil strength averaged over 3 days to 5 days after seeding, being lowered to 80% at soil strength of 1.0kg/cm$^2$ and to 50% at 1.7kg/cm$^2$. Emergence speed of barnyardgrasses was faster than rice varieties, and E. crus-galli var. oryzjcola than E. crus-galli var. praticola. Italiconaverneco and Dadazo showed faster emergence in rice varieties. Galsaekggarakshare showed slower emergence speed than these two varieties with similar seedling emergence percentage. The greater and faster elongations of mesocotyl and incomplete leaf in rice, and of mesocotyl in barnyardgrass were the characteristics responsible for higher seedling emergence rate in the environment examined.

  • PDF

Social Backgrounds and Clan Politics of Kazakhstan Elites: Focusing on Elites from Junior Zhuz (카자흐스탄 엘리트의 사회배경과 씨족 정치: 소주즈(Zhuz) 출신 엘리트를 중심으로)

  • Bang, Ilkwon
    • Journal of International Area Studies (JIAS)
    • /
    • v.14 no.1
    • /
    • pp.77-106
    • /
    • 2010
  • As for the matter of guardianship-benefit network which has been at the heart of the discussion of power elites and clan politics in Kazakhstan, it has been often maintained that it is basically formed by the framework of the regional and descent connection net called Zhuz or at least it has been heavily under Zhuz's influence. But it is pointed out that the controversy of Zhuz suffers from a lot of limitations in explaining the surface of power elites in the recent process of political changes and the rearrangement of power relations. Consequently, this paper tried to take a closer look at the matter focusing on the social backgrounds of elites from Junior zhuz, who have been estimated to be relatively pushed back in terms of the advancement into the central power. As a result, it was found that the backgrounds of clan and tribe origin within Zhuz couldn't have any foundation to be seen as a decisive element through which they could grow into power elites. The phenomenon of Kazakhstani elites is a legacy of concrete historic situations. The important consideration points for analyzing the emergence of elites which could be applied to a nomadic and traditional society can hardly be an invariable framework for analyzing modern elites since independence. Since 2000, Kazakhstan has experienced economic changes including privatization due to the absolute strengthening of presidential influence which turned into a foundation for a new authoritarian system, the rearrangement of the inner circle of power, and their decisions. These changes in situations have had profound effects on the character of power elites. The phenomenon that clandestine connections have shown their appearances as they have gotten intertwined with various factors, in particular, in the economic field which has been heavily under Junior zhuz makes us convinced that the elite organization in Kazakhstan has always been the product of political and economic changes. In reality, the behaviors of elites were the outcome continuously reflecting environmental situations surrounding them, and those situations lie in a complicated and multiple-layered connection net. Therefore, it is believed that having interests in elites' social backgrounds and maintaining many pieces of information on them will be able to be a more useful approach to analyzing the elite society in the future in that interests in their social backgrounds become an informant of various network formation nets which reflect real situations.

Application of unmanned helicopter on pest management in rice cultivation (무인 항공기 이용 벼 병해충 방제기술 연구)

  • Park, K.H.;Kim, J.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.43-58
    • /
    • 2008
  • This research was conducted to determine the alternative tool of chemical spray for rice cultivation using the unmanned helicopter(Yamaha, R-Max Type 2G-remote controlled system) at farmer's field in Korea. The unmanned helicopter tested was introduced form Japan. In Korea the application of chemicals by machine sprayer for pest management in rice cultivation has been ordinarily used at the farmer's level. However, it involved a relatively high cost and laborious for the small scale of cultivation per farm household. Farm population has been highly decreased to 7.5% in 2002 and the population is expected to rapidly reduce by 3.5% in 2012. In Japan, pest control depending on unmanned helicopter has been increased by leaps and bounds. This was due in part to the materialization of the low-cost production technology under agricultural policy and demand environmentally friendly farm products. The practicability of the unmanned helicopter in terms of super efficiency and effectiveness has been proven, and the farmers have understood that the unmanned helicopter is indispensable in the future farming system that they visualized. Also, the unmanned helicopter has been applied to rice, wheat, soybean, vegetables, fruit trees, pine trees for spraying chemicals and/or fertilizers in Japan Effect of disease control by unmanned helicopter was partially approved against rice blast and sheath blight. However, the result was not satisfactory due to the weather conditions and cultural practices. The spray density was also determined in this experiment at 0, 15, 30, and 60cm height from the paddy soil surface and there was 968 spots at 0cm, 1,560 spots at 15cm, 1,923 spots at 30cm, and 2,999 spots at 60cm height. However, no significant difference was found among the treatments. At the same time, there was no phytotoxicity observed under the chemical stray using this unmanned helicopter, nor the rice plant itself was damaged by the wind during the operation.

Characterization of CaCO3 Formation Using an Ion Selective Electrode : Effects of the Mg/Ca Ratio and Temperature (이온 선택성 전극을 이용한 탄산칼슘 형성 특성 연구 : 마그네슘-칼슘 비율과 반응 온도의 영향)

  • Misong Han;Byoung-Young Choi;Seung-Woo, Lee;Jinyoung Park;Soochun Chae;Jun-Hwan Bang;Kyungsun Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.111-120
    • /
    • 2023
  • The nucleation mechanism was studied using a calcium ion selective electrode (Ca ISE) to observe the formation of CaCO3, a representative mineral in the CO2 cycle, and to analyze the effect of the Mg/Ca-ratio and temperature on the formation of pre-nucleation cluster (PNC) and CaCO3. As a result of the experiment, a small amount of crystal was formed. Energy dispersive X-ray spectroscopy (EDS) was used for surface element analysis, and a field emission scanning-electron microscope (FE-SEM) was used for the morphology analysis of synthesized carbonates. These results showed that various shapes of crystalline CaCO3 (calcite, aragonite, etc.) were observed for each Mg/Ca ratio and temperature. In addition, the calibration plot obtained from Ca ISE showed information on the formation process of CaCO3. Our results showed that as magnesium ions interfered with the binding of calcium and carbonate ions and delayed the aggregation between PNCs, the nucleation and formation of CaCO3 were delayed. On the other hand, the temperature showed an opposite trend as compared to the effect of magnesium under our experimental conditions, indicating that temperature accelerated the formation of CaCO3. Furthermore, the morphology of CaCO3 clearly changed according to the Mg/Ca ratio and temperature, and it was confirmed that the two factors are very important for CaCO3 formation in that they could affect the overall process.

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model (FAO Penman-Monteith 기준증발산식 민감도 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.285-299
    • /
    • 2023
  • Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery (MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석)

  • Minki Choo;Cheolhee Yoo;Jungho Im;Dongjin Cho;Yoojin Kang;Hyunkyung Oh;Jongsung Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.325-338
    • /
    • 2023
  • Korean fir (Abies koreana Wilson) is one of the most important environmental indicator tree species for assessing climate change impacts on coniferous forests in the Korean Peninsula. However, due to the nature of alpine and subalpine regions, it is difficult to conduct regular field surveys of Korean fir, which is mainly distributed in regions with altitudes greater than 1,000 m. Therefore, this study analyzed the vegetation change trend of Korean fir using regularly observed remote sensing data. Specifically, normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST), and precipitation data from Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievalsfor GPM from September 2003 to 2020 for Hallasan and Jirisan were used to analyze vegetation changes and their association with environmental variables. We identified a decrease in NDVI in 2020 compared to 2003 for both sites. Based on the NDVI difference maps, areas for healthy vegetation and high mortality of Korean fir were selected. Long-term NDVI time-series analysis demonstrated that both Hallasan and Jirisan had a decrease in NDVI at the high mortality areas (Hallasan: -0.46, Jirisan: -0.43). Furthermore, when analyzing the long-term fluctuations of Korean fir vegetation through the Hodrick-Prescott filter-applied NDVI, LST, and precipitation, the NDVI difference between the Korean fir healthy vegetation and high mortality sitesincreased with the increasing LST and decreasing precipitation in Hallasan. Thissuggests that the increase in LST and the decrease in precipitation contribute to the decline of Korean fir in Hallasan. In contrast, Jirisan confirmed a long-term trend of declining NDVI in the areas of Korean fir mortality but did not find a significant correlation between the changes in NDVI and environmental variables (LST and precipitation). Further analyses of environmental factors, such as soil moisture, insolation, and wind that have been identified to be related to Korean fir habitats in previous studies should be conducted. This study demonstrated the feasibility of using satellite data for long-term monitoring of Korean fir ecosystems and investigating their changes in conjunction with environmental conditions. Thisstudy provided the potential forsatellite-based monitoring to improve our understanding of the ecology of Korean fir.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.