• Title/Summary/Keyword: Surface-active property

Search Result 92, Processing Time 0.025 seconds

A Study for Natural Dyeing Textiles with Bean-Juice Treatment Method (콩즙 처리 방법에 따른 천연염색포의 염색성 연구)

  • Park, Kyeon-Soon;Choi, In-Ryu;Bae, Kye-In
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • This study focused on bean-juice treatment method which have dyeing property to indigo, yellow soil, sappan wood, cochineal and also on the possibility of applying to mordanting. This is different from the active mordanting using chemicals. Natural mordants with development of dyeing are not harmful, also are the medicines for disease. Limestone and ash neutralize the acidic soil. bean-juice protein adhere to cellulose surface and change the physical properties of protein so that coloring of dye is better than before and film non-soluble in water is made. Therefore the color made from bean-juice process lasts after washing. This study try to show one of the ways to improve the current method using the heavy metal which can have bad effects for environment and human being. Bean-juice(raw bean, heated bean) treatment method can be the way to fix the natural dyeing problem of bad dyeing. Bean-juice had been treated under various condition with pre-treatment, post-treatment and raw bean, heated bean. Following results are obtained in this study. In the case of Indigo dyeing, pre-treatment of heated bean shows the biggest difference of color. In the case of yellow soil dyeing, pre-treatment of raw bean-juice shows the biggest gap of color. Pre-treatment of heated bean in sappan wood dyeing case and post-treatment of raw bean show bigger color difference than pre-treatment of raw bean. In cochineal dyeing, raw bean pre-treatment shows the biggest color difference.

  • PDF

The Preparation Characteristic of Dimercaptan-Polyphenylenediamine Cathodes for Lithium Battery (리튬전지용 Dimercaptan-Polyphenylenediamine 정극의 제막특성)

  • Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.114-121
    • /
    • 1997
  • The positive active material for polymer film-battery was prepared by using polyphenlenediamine(PPD) synthesized in our lab. and 2,5-dimercapto-1,3,4-thiadiazole(DMcT) with various mixture ratio. The transference measurement of surface morphology and thermal stability of the prepared composite film was carried out by using SEM and TGA, respectively. Electrochemical property and electrical conductivity of the composite film were also measured by using cyclic voltammetry and four-probe method in dry box, respectively. The thermal stability of prepared composite film was up to $200^{\circ}C$. The electrical conductivity of the composite film increased and showed the highest value(about 3 S/cm) when doped at 0.4% $LiCIO_4$ solution. And we could confirm that DMcT was effective on reactivation of PPD through cyclic voltammogram.

  • PDF

Enhancing Effects of NaHSO3 on Corrosion of T91 Steel

  • Wu, Tangqing;Tan, Yao;Wang, Jun;Xu, Song;Liu, Lanlan;Feng, Chao;Yin, Fucheng
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.368-378
    • /
    • 2020
  • In the paper, corrosion behavior of T91 steel in different concentrations of NaHSO3 solution was studied in combination with scanning electron microscope (SEM) and electrochemical measurements. The results showed that the steel exhibited active anodic dissolution characteristics in the solution, and NaHSO3 concentration affected both cathodic and anodic behaviors. The steel surface was covered by intact corrosion products in the solutions, but the compactness and mechanical properties of the corrosion products degraded with the increase of NaHSO3 concentration. In low-concentration NaHSO3 solution the steel tended to undergo uniform corrosion with slight corrosion pits, but its corrosion mode gradually transited to localized corrosion as the NaHSO3 concentration increased. The mechanical property degradation of the corrosion products caused by sulfur compounds and the pH decrease of the solution are the important factors to accelerating its corrosion process.

A Study on CH4-SCR Reaction Characteristics of Mg-added Composite Alumina Pt Catalysts (Mg이 첨가된 복합 알루미나 Pt촉매의 CH4-SCR 반응특성에 관한 연구)

  • Won, Jong Min;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • In this study, a catalyst based on $Pt/Al_2O_3$ supported on Mg was prepared by a wet impregnation method to investigate the $CH_4-SCR$ reaction characteristics of various alumina supports. Alumina supported on $Pt/Al_2O_3$ catalyst was converted to an $Al_2O_3$ composite, and when Mg was added, oxygen species of the active metal Pt were controlled due to electrophobic characteristics. Oxygen-controlled Pt used as a reducing agent inhibited the oxidation of $CH_4$ to $CO_2$. The addition of Mg also promoted the adsorption of NO species and the conversion of NO to $NO_2$ due to the NOx storage property on the catalyst surface.

Interleaving Phenomena of the North Pacific Intermediate Water in the Offshore Area of the Kuroshio

  • Yang, Sung-Kee;Lee, Byung-Gul
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.521-527
    • /
    • 2003
  • To study the intruded phenomena of North Pacific Ocean around Boso peninsular, water property distribution in the adjacent seas to Japan is studied using the hydrographic data obtained by Japan Maritime Agency and Japan Fisheries Agency from 1973 to 1996, The scattering of water type in T-5 diagram is relatively small in the Kuroshio Region. Both the envelopes of saline side and of fresh side of the scattered data points shifts gradually from saline side to fresh side as the observation Line moves from southwest to northeast. In mixed water region, the scattering of water type increases rapidly as the observation line moves north; the envelope of fresh cold side moves towards fresh cold side much faster than that of saline side. This suggests that the water does not advect along the salinity minimum layer, but the salinity minimum layer can be understood as a boundary of two different waters aligned vertically, We defined the typical water masses as the Oyashio Water and the Kuroshio Water. The water mass below the salinity minimum layer may be created by isopycnal mixing of these two water masses with a fixed mixing rate. While the water mass above the salinity minimum cannot be created simply by isopycnal mixing. The salinity minimum layer may be eroded from upper side due to active minxing processes in the surface layer, while the water of the salinity minimum layer moves gradually southward. This appears to give an explanation why the thermosteric anomaly value at salinity minimun decereases towards south.

Crystal Structure and Optical Property of Single-Phase (1210) Gallium Nitride Film ((1210) Gallium Nitride 단결정 박막의 결정구조 및 광학적 특성)

  • Hwang Jin Soo;Chong Paul Joe
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 1997
  • The optical properties of (1210) GaN epitaxy films grown on the (1012) $\alpha-A1_2O_3$ substrates have been studied. The hetero-epitaxy films were grown by the halide vapor phase epitaxy (HVPE) method using $Ga/HC1/NH_3/He$ system at $990^{\circ}C$. XRD, RHEED and SEM are used for the identification of the hetero-epitaxy films structure and surface morphology. The confirmed (1210) GaN epitaxy films were characterized by PL and Raman. By the Raman scattering, the active phonon modes of single-phase GaN films are varied with the arrangement of both polarization and propagation directions of laser beam with reference to the axis in single-phase crystal films. The Y(Z, Y & Z) X geometry allows scattering pat-terns of $A_1(TO)=533\;cm^{-1},\;E_1(TO)=559\;cm^{-1}\;and\;E_2=568 cm^{-1}$ modes, whereas in the Z(Y, Y & Z) X geometry the only $E_2$ mode are observed.

  • PDF

Effect of Cathode Porosity on the Cathodic Polarization Behavior of Mixed Conducting LSCF(La0.6Sr0.4Co0.2Fe0.8O3) (혼합전도체 LSCF(La0.6Sr0.4Co0.2Fe0.8O3) 양극의 기공률에 따른 양극분극 특성)

  • Yun, Joong-Cheul;Lee, Jong-Ho;Kim, Joosun;Lee, Hae-Weon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.251-259
    • /
    • 2005
  • In order to characterize the influence of the reaction-site density on the cathodic polarization property of LSCF, we chose the porosity of LSCF as a main controlling variable, which is supposed to be closely related with active sites for the cathode reaction. To control the porosity of cathodes, we changed the mixing ratio of fine and coarse LSCF powders. The porosity and pore perimeter of cathodes were quantitatively analyzed by image analysis. The electrochemical half cell test for the cathodic polarization was performed via 3-probe AC-impedance spectroscopy. According to the investigation, the reduction of oxygen at LSCF cathode was mainly controlled by following two rate determining steps; i) surface diffusion and/or ionic conduction of ionized oxygen through bulk LSCF phase, ii) charge transfer of oxygen ion at cathode/electrolyte interface. Moreover, the overall cathode polarization was diminished as the cathode porosity increased due to the increase of the active reaction sites in cathode layer.

Emulsifying Properties of Concentrated Red Ginseng Extract: Influence of Concentration, pH, NaCl (홍삼농축액 함유 유화액의 유화특성에 관한연구)

  • You, Kawn-Mo;Jang, Hyeon-Ho;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.504-514
    • /
    • 2017
  • This study was carried out to investigate the emulsifying properties of concentrated red ginseng extract (CRGE). First, we determined the interfacial tension of CRGE at the oil-water interface. Second, oil-in-water emulsions were prepared with CRGE and then their physicochemical properties such as fat globule size, zeta-potential, dispersion stability, and microscopic characteristics were determined. It was found that interfacial tension gradually decreased with increasing CRGE concentration, indicative of some surface activity. In emulsions, fat globule size was decreased as CRGE concentration increased, showing a critical value ($d_{43}$$0.39{\mu}m$) at ${\geq}3.5wt%$ of CRGE. In addition, pH and NaCl also influenced on fat globule sizes; they were increased in acidic conditions ($pH{\leq}3$) or in higher NaCl concentration (${\geq}0.4M$) and these results were interpreted in view of the change in zeta potentials. The dispersion stability by separation analyzer ($LUMiFuge^{(R)}$) showed that it was more stable in emulsions with higher CRGE concentration (i.e., ${\geq}3.5wt%$). In conclusion, CRGE was surface-active and it could be used as an emulsifier in preparation of food emulsions.

Synthesis and Biocompatibility Study of Hydrogel for Patch Sensor in Non-invasive Glucose Monitoring System (무채혈 혈당 측정시스템의 Patch Sensor용 수화젤의 합성 및 생체적합성에 관한 연구)

  • Kwon, Jeong-Woo;Kim, Dong-Chul;Yoon, In-Joon;Jeong, Yoon-Na;Jeong, Ji-Young;Hwang, In-Sik
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 2009
  • This study aims to verify for humans the suitability of the enzyme-fixed hydrogel used for the patch sensor of the blood sugar testing system without blood sampling, which utilizes reverse iontophoresis. Using acrylate monomers, hydrogel was synthesized to which a certain unit of enzyme is fixed. In order to analyze the material property of the synthesized hydrogel, a structural analysis was performed using FT-IR spectroscopy, while the DSC was used to verify the thermal stability. In addition, with the UV-Vis spectrophotometer, it was verified that the degree of active enzyme is at least 50% greater than the standard product. The SEM was used to verify secure fixation of the enzyme onto the surface. As a result, it was observed that the enzyme is successfully fixed to the surface. Since the hydrogel makes direct contact with a patient's skin, it is essential to evaluate the toxicity when making direct contact with the skin. For that purpose, various sets of tests were undertaken according to the ISO 10993-cytotoxicity, intracutaneous reactivity, skin irritation test and maximization sensitization. Consequently, it was successfully verified that the enzyme-fixed hydrogel have bioavailability.

Property of Nickel Silicides with 10 nm-thick Ni/Amorphous Silicon Layers using Low Temperature Process (10 nm-Ni 층과 비정질 실리콘층으로 제조된 저온공정 나노급 니켈실리사이드의 물성 변화)

  • Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.322-329
    • /
    • 2009
  • 60 nm- and 20 nm-thick hydrogenated amorphous silicon (a-Si:H) layers were deposited on 200 nm $SiO_2/Si$ substrates using ICP-CVD (inductively coupled plasma chemical vapor deposition). A 10 nm-Ni layer was then deposited by e-beam evaporation. Finally, 10 nm-Ni/60 nm a-Si:H/200 nm-$SiO_2/Si$ and 10 nm-Ni/20 nm a-Si:H/200 nm-$SiO_2/Si$ structures were prepared. The samples were annealed by rapid thermal annealing for 40 seconds at $200{\sim}500^{\circ}C$ to produce $NiSi_x$. The resulting changes in sheet resistance, microstructure, phase, chemical composition and surface roughness were examined. The nickel silicide on a 60 nm a-Si:H substrate showed a low sheet resistance at T (temperatures) >$450^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate showed a low sheet resistance at T > $300^{\circ}C$. HRXRD analysis revealed a phase transformation of the nickel silicide on a 60 nm a-Si:H substrate (${\delta}-Ni_2Si{\rightarrow}{\zeta}-Ni_2Si{\rightarrow}(NiSi+{\zeta}-Ni_2Si)$) at annealing temperatures of $300^{\circ}C{\rightarrow}400^{\circ}C{\rightarrow}500^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate had a composition of ${\delta}-Ni_2Si$ with no secondary phases. Through FE-SEM and TEM analysis, the nickel silicide layer on the 60 nm a-Si:H substrate showed a 60 nm-thick silicide layer with a columnar shape, which contained both residual a-Si:H and $Ni_2Si$ layers, regardless of annealing temperatures. The nickel silicide on the 20 nm a-Si:H substrate had a uniform thickness of 40 nm with a columnar shape and no residual silicon. SPM analysis shows that the surface roughness was < 1.8 nm regardless of the a-Si:H-thickness. It was confirmed that the low temperature silicide process using a 20 nm a-Si:H substrate is more suitable for thin film transistor (TFT) active layer applications.