• 제목/요약/키워드: Surface water waves

검색결과 292건 처리시간 0.022초

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

BATHYMETRIC MODULATION ON WAVE SPECTRA

  • Liu, Cho-Teng;Doong, Dong-Jiing
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.344-347
    • /
    • 2008
  • Ocean surface waves may be modified by ocean current and their observation may be severely distorted if the observer is on a moving platform with changing speed. Tidal current near a sill varies inversely with the water depth, and results spatially inhomogeneous modulation on the surface waves near the sill. For waves propagating upstream, they will encounter stronger current before reaching the sill, and therefore, they will shorten their wavelength with frequency unchanged, increase its amplitude, and it may break if the wave height is larger than 1/7 of the wavelength. These small scale (${\sim}$ 1 km changes is not suitable for satellite radar observation. Spatial distribution of wave-height spectra S(x, y) can not be acquired from wave gauges that are designed for collecting 2-D wave spectra at fixed locations, nor from satellite radar image which is more suitable for observing long swells. Optical images collected from cameras on-board a ship, over high-ground, or onboard an unmanned auto-piloting vehicle (UAV) may have pixel size that is small enough to resolve decimeter-scale short gravity waves. If diffuse sky light is the only source of lighting and it is uniform in camera-viewing directions, then the image intensity is proportional to the surface reflectance R(x, y) of diffuse light, and R is directly related to the surface slope. The slope spectrum and wave-height spectra S(x, y) may then be derived from R(x, y). The results are compared with the in situ measurement of wave spectra over Keelung Sill from a research vessel. The application of this method is for analysis and interpretation of satellite images on studies of current and wave interaction that often require fine scale information of wave-height spectra S(x, y) that changes dynamically with time and space.

  • PDF

2차원 Beach에서 쇄파의 시뮬레이션을 위한 수치계산기법의 비교 (Comparison of Numerical Methods for Two-dimensional Wave Breaker on a Plane Beach of Constant Slope)

  • 정광열;이영길
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.119-125
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory and solitary wave theory are employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with each other. The marker-density method is better then the hybrid method. Also they are compared with other existing experimental results. The Agreement between the experimental data and the computation results is good.

  • PDF

비음향신호(난류항적)를 이용한 대잠 탐색 및 감시체계 적용방안 연구 (A Study on Anti-Submarine Surveillance Systems using Submarine's Turbulent Wake)

  • 이용철;임세한;박종진;진종한;강웅;이문진;김윤배
    • 한국군사과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.138-146
    • /
    • 2012
  • Using Shear-free Ship wake theory it was predicted the detectable submarine's turbulent wake on the sea surface was about 12km long when there was no breaking waves on the sea surface. It means that there are sufficient detectable turbulent kinetic energies on the sea surface as well as in the water. In this paper, we have proposed some concepts of non acoustic anti-submarine surveillance systems; SAR for sea surface surveillance, LIDAR for sub-surface surveillance and propelled gliders for under -water surveillance.

협수로에서 생성되는 고립파 형태의 항주파와 항주파류 (Solitary Wave-like Ship Induced Waves and Its Associated Currents in a Water Channel of Narrow Width)

  • 조용준;최한림
    • 한국해안·해양공학회논문집
    • /
    • 제27권4호
    • /
    • pp.202-216
    • /
    • 2015
  • 가용한 토지의 부족으로 현재 우리나라 인공운하에서 흔히 관측되는 협수로에서는 고립파 형태의 항주파가 생성되는 것으로 추정된다. 본고에서는 이러한 가설을 확인하기 위해 수치모의를 수행하였다. 수치모의는 삼차원 Navier Stokes 식과 VOF에 기초하여 수행되었으며, 수치모형의 검증은 현재 우리에게 가용한 운하 설계기준 중 가장 빈번히 언급되는 PIANC (1987) 설계안과 본고에서 유도된 해석해에 기초하여 수행되었다. 모의결과, 고립파형태의 항주파가 관측되었으며, 하안 인근에서 계측된 선수파 파고의 경우 수치모의 결과는 PIANC (1987) 설계안을 상회하였으며 상당히 오랜 기간 (이십초 내외) 지속되었다. 선미파의 경우는 하회하였다. 이러한 결과는 광역수로에서 관측되는 항주파의 일반적인 특성과는 상이한 것으로 좁은 수로 폭이 항주파 특성에 영향을 미치는 것으로 판단된다. 또한 선박의 협수로 통과시 선박을 중심으로 양안으로 진행되는 흐름과, 반사로 인해 양안에서 선박으로 진행되는 흐름이 교대로 출현하였으며 이 때 최대 0.90 m/s의 유속이 전 수심대역에서 비교적 균일하게 유지되어, 상당한 쇄굴이 진행될 수 있다고 판단된다.

유한한 깊이의 투수층에 의한 파랑의 감쇠 (Damping of Water Waves over Permeable Bed of Finite Depth)

  • 김건우;이명은
    • 해양환경안전학회지
    • /
    • 제18권3호
    • /
    • pp.199-205
    • /
    • 2012
  • 본 연구에서는 유한한 깊이의 투수층에 의한 에너지 감쇠효과를 고려한 파랑의 변형을 해석하였다. 파의 에너지 감쇠율과 상대수심의 관계식을 제시하였으며, 에너지 감쇠율을 고유함수전개법에 사용하여 투수층에 의한 에너지 감쇠를 계산하였다. 투수성이 있는 수중둔덕에 대해서, 수치실험 결과는 해석해로 간주할 수 있는 적분방정식의 결과와 비교하여 잘 일치하였다. 또한, 투수경사에 의한 반사율을 다양한 주파수에 대해서 실험하였으며, 수치실험 결과, 수심이 매우 커서 수면파가 투수층의 영향을 받을 정도가 아닌 경우에는 상대적으로 파장이 짧은 파랑일수록 투수층의 영향을 크게 받는 것으로 나타났다.

고정식 진동 수주형 파력 발전기(OWC) 형상 파라미터의 실험 연구 (Experimental Study of Shape Parameter of Land-based OWC Wave Energy Converter)

  • 구원철;권진성;김준동;김성재;김민우;최문관
    • 한국해양공학회지
    • /
    • 제26권3호
    • /
    • pp.33-38
    • /
    • 2012
  • The aim of this experimental study was to analyze the effect of the shape parameters and chamber pressure of a land-based oscillating water column (OWC) in regular incident waves. The magnitude of the free surface elevations inside the chamber was measured in a two-dimensional wave tank for various chamber skirt drafts and bottom slope angles. The surface elevations were also measured under both open chamber and partially open chamber conditions. From these measurements, the optimum shape of the OWC device could be predicted for the maximum wave energy conversion efficiency. It was found that the resonance frequency of the OWC system associated with incident waves moved toward the long wave region with increments of the draft of the chamber skirt and bottom slope. The behavior of the free surface elevation inside the chamber was also found to be dependent on the chamber pressure.

자유수면에 낙하하는 물체의 충격압력 변화에 관한 연구 (A Study on the Impact Pressure of a Falling Body upon a Free Surface Water)

  • 이종붕
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.295-304
    • /
    • 2001
  • The hydrodynamic impact problem was studied from 1929 to recent. Especially, Impact pressure is important for the design of the ships and offshore structure and spacecrafts, and under weapons. A ship traveling at high speed or in heavy sea has its bow and bottom damaged by high pressure caused by impact with and detachment from the water surface. Considerable impact may also occur when large waves hit the cross member or deck plate of an offshore structure within the splash zone. Many engineering cases require consideration of impact pressure, the movement of objects and change of the flow field. This study was obtained the pressure distribution of a falling body that is deadrise angle $0^{\circ}$ and deadrise angle $5^{\circ}$ upon a water surface by the experiment with the impact machine. The theoretical equation was obtained the air region and the interface and the water region which devide 3 parties between the body and the water surface for an investigation of the complete phenomena. Pressure distributions and histories compare favorably with available experimental data. The numerical results are similar to the experimental results for the impact force type with Fo(1+$cos{\pi}t/tc$).

  • PDF

축대칭 부표의 규칙파중 운동특성에 대한 연구 (A Stuty on the Dynamic Response of an Axisymmetric Buoy in Regular Waves)

  • 홍기용;김효철;최항순
    • 대한조선학회지
    • /
    • 제23권3호
    • /
    • pp.1-9
    • /
    • 1986
  • Herein the dynamic response of an axisymmetric buoy to regular wave is studied within linear potential theory. The buoy has a particular geometry so that it should experience minimum wave-exiting force on the vertical direction at a precribed wave number in water of finite depth. Invoking the Green's theorem a velocity potential is generated by distributing pulsating sources and doublets on the immersed surface of the buoy at its mean position. Hydrodynamic forces and moments are obtained approximately by summation of the products of linear pressure and directional mesh area over the immersed surface. Model tests are carried out to measure the wave-exciting forces, hydrodynamic forces and motion responses. The experimental results in general agree fairly well with the numerical ones. From the analytical and experimental works it is found that the pitching motion and its coupling effect affect significantly the motion characteristics of the freely-floating axisymmetric buoy in regular waves.

  • PDF