• Title/Summary/Keyword: Surface water area

Search Result 2,767, Processing Time 0.04 seconds

Changes in MCSST and Chlorophyll-a Off Sanriku Area (38-43N, 141-l50N) from NOAA/AVHRR and SeaWiFS Data

  • Kim, Myoung-Sun;Asanuma, Ichio
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.95-100
    • /
    • 1998
  • The purpose of this study is to describe the change of the spring bloom and oceanographic condition. The variation of pigment concentration derived from the satellite ocean color data has been analyzed. According to the movement of blooming area, blooming was very concerned with a rising trend of sea surface temperature and a supply of nutrients. A nutrient rich water carried by the Oyashio encounters with the warm Core ring, where mixings and blooms are observed. We examined the correlation by using the satellite observations of the temperature and chlorophyll-a for the spring seasons (May, June, July) of 1998 the off Sanriku area (38-43N, 141- l50E). Using the SeaWiFS data, we process the data into the level-3, which contains the geophysical value of chlorophyll-a. And chlorophyll-a data is mapped for the water between 110E and 160E, and 15N and 52N with a 0.08 * 0.05 degree grid for each image. And Sea Surface Temperature (SST) data is produced using the AVHRR onboard the NOAA. The SST is derived by the MCSST. Then, the data is mapped for the water as much as chi-a data. And these gridded image was made by detection of each water masses, which are Kuroshio Extension, the warm-core ring and the Oyashlo Intrusion, etc., using those satellite images to determine short term change. Off Sanriku is a place where warm-water pool and the Oyashio at-e mixed. When warm streamer has intruded in cold water, the volume of phytoplankton increases at the tip of warm streamer. Warm water streamer was trigger of occurring blooming. And also, SeaWiFS images provided as much information for the studies of chlorophyll-a concentrations in the surface.

  • PDF

Causes of Fish Kill in the Urban Stream and Prevention Methods II - Application of Automatic Water Quality Monitoring Systen and Water Quality Modeling (도시 하천에서의 어류 폐사 원인 분석 II - 자동수질측정장치 및 수질모델의 사용)

  • Lee, Eun-hyoung;Seo, Dongil;Hwang, Hyun-dong;Yun, Jin-hyuk;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.585-594
    • /
    • 2006
  • This study focused on the causes of fish kills and its prevention methods in Yudeung Stream, Daejeon, Korea. Intense field data, continuous water quality monitoring system and water quality modeling were applied to analyze the causes. Pollutant can be delivered to urban streams by surface runoff and combined sewer overflows in rainfall events. However, water quality analysis and water quality modeling results indicate that the abrupt fish kills in the Yudeung stream seems to be caused by combined effect of DO depletion, increase in turbidity and other toxic material. Excessive fish population in the study area may harm the aesthetic value of the stream and also has greater potential for massive fish kills. It is suggested to implement methods to reduce delivery of pollutants to the stream not only to prevent fish kills but also to keep balance of ecosystem including human uses. Frequent clean up of the urban surface and CSO, installation of detention basin will be helpful. In the long run, it seems combined sewer system has be replaced with separate sewer system for more effective pollutant removal in the urban area.

Estimation of the Change in Ground Water Level using Regression Analysis (회귀분석을 이용한 지하수 수위 변화 추정)

  • Kim, Sang-Min;Ahn, Byeong-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this study is to identify whether or not the ground water level is decreasing. We suggest a method of estimating the change in groundwater level using newly developed groundwater pumping station data. The Goseong area located in Gyeongnam province was selected considering three factors. First, this area demands relatively large amount of irrigation water because most of the land is used as a paddy field and the proportion of the paddy field within total arable land is increasing. Second, groundwater level data in nearby area are available since these are monitored by Water Management Information System (WAMIS). Third, many groundwater pumping stations have been developed in this area in order to overcome droughts thus detail information for pumping stations are available. Regression results indicate groundwater level has been decreased for over 20 years. This decreasing trend is due to the shortage of surface irrigation water which was caused by the decrease in rainfall.

Elect on Saving Water of Underground Trickle Irrigation (지중관수 방법에 의한 용수절감 효과)

  • Kim J. H.;Kim C. S.;Kim T. W.;Hong J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.102-109
    • /
    • 2005
  • Water consumption at the farm is up to 48 percent of water resource of South Korea while manufacturing industry's is only $9.6\%$. The area of arable land is 2,077,067 ha and 27 percent of it is used for growing fruits and vegetables using furrow or surface irrigation at the greenhouse. Surface irrigation at the greenhouse for fruits and vegetables has problems such as over watering and insufficient supply of water to the fine roots of the plant. However, the research on the new method of irrigation to save water usage is few. The characteristics of soil wetting was measured for using surface irrigation and underground trickle irrigation method where water was supplied at 10, 15, 20, and 25 cm beneath the surface ground. Followings are summary of this study. 1. The efficiency of underground trickle irrigation was expected to be as high as twice of surface irrigation such as drip watering or sprinkling. 2. This improvement could be possible by using less than $50\%$ of irrigation water than surface irrigation to supply similar amount of water near fine roots. 3. Surface irrigation causes soil compaction as deep as 20 cm below the surface ground which reduces soil porosity and root respiration ending up developing less fine roots. 4. Underground trickle irrigation can prevent overdamping in the greenhouse since it does not over wet the surface soil. At winter, the amount of agricultural chemical usage could be reduced since this irrigation method does not develop blight or crop disease from condensation of water vapor.

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea (서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상)

  • Sang-Ho Moon;Yoon Yeol Yoon;Jin-Yong Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.671-687
    • /
    • 2022
  • It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea III. Distribution Patterns of Water Masses and Nutrients in the Middle-Northern last Sea of Korea in October, 1995 (동해 극전선역의 영양염류 순환 과정 III. 1995년 10월 동해 중부 및 북부 해역의 수괴와 영양염의 분포)

  • CHO Hyun-Jin;MOON Chang-Ho;YANG Han-Seob;KANG Won-Bae;LEE Kwang-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.393-407
    • /
    • 1997
  • A survey of biological and chemical characteristics in the middle-northern East Sea of Korea was carried out at 28 stations in October, 1995 on board R/V Tam-Yang. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW), (2) Tsushima Surface Water (TSW), (3) Tsushima Middle Water (TMW), (4) North Korean Cold Water (NKCW), (5) last Sea Porper Water (ESPW). Other 4 mixed water masses were also observed. It is highly possible that the LSSW which occured at depths of $0\~30m$ in the most southern part of the study area is originated from the Yangtze River (Kiang) of China due to very low salinity $(<32.0\%_{\circ})$ relatively high concentration of dissolved silicate and no sources of freshwater input into that area. Oxygen maximum layer in the vertical profile was located near surface at northern cold waters and became deeper at the warm southern area. Oxygen minimum layer af depths $50\~100m$, which is TMW, were found in only southern area. In the vortical profiles of nutrients, the concentrations were very low in the surface layer and increased drammatically near the thermocline. The highest concentration occurred in the ESPW. The relatively low value of Si/P ratio in the ESPW (13.63) compared to other reports in the East Sea was due to continuous increase of P with depth as well as Si. The N : P ratio was about 6.92, showing that nitrogenous nutrient is the limiting factor for phytoplankton growth. The exponential relationship between Si and P, compared to the linear relationship between N and P, indicates that nitrate and phosphate have approximately the same regenerative pattern, but silicate has delayed regenerative pattern.

  • PDF

Evapotranspiration Estimation Study Based on Coupled Water-energy Balance Theory in River Basin

  • Xue, Lijun;Kim, JooCheol;Li, Hongyan;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.146-146
    • /
    • 2018
  • Basin evapotranspiration is the result of water balance and energy balance, which is affected by climate and underlying surface characteristics, the process is complex, and spatial and temporal variability is large, the evapotranspiration estimation of river basin is an important but difficult problem in the field of hydrology, over the years, many scholars devoted to the basin actual evapotranspiration estimation and achieved excellent results. We discuss Budyko coupled water-energy balance theory and evaporation paradox, then use the Fu's equation to estimate actual evapotranspiration yearly in different areas with different dryness. The result shows that Fu's equation has high precision for estimating evapotranspiration yearly in our selected study area, and the estimation result has higher precision in the area with high dryness. Then, we propose an improved formula which can be used to estimate actual evapotranspiration monthly. Furthermore, we found that the parameter in the formula reflects general conditions of underlying surface and it is affected by several factors, at last, we tried to propose the calculation formula. The study indicates that Fu's equation provides a reliable method for evapotranspiration estimation in dry regions as well as semi-humid and semi-arid regions, which has great significance for forecasting river basin water resources and inquiring into ecological water requirement.

  • PDF

Simulation of Water Temperature in the Downstream According to Withdrawal Types of Dam using EFDC Model (댐 방류형태가 하류 하천 수온변화에 미치는 영향 예측)

  • Park, Jae-Chung;Yoon, Jin-Hyuk;Jung, Yong-Moon;Son, Ji-Yeon;Song, Young-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.715-724
    • /
    • 2012
  • In this study, we simulated water temperature in the downstream according to withdrawal types of dam using EFDC model. Three scenarios were assumed as water was released from the surface layer, the middle layer, and the bottom layer at intervals of 10m depth. In case of the surface layer withdrawal, the water temperature rose from March and lowered gradually after it reached a peak in August. The middle and the bottom layers effluence temperatures were lower than the surface layer temperature by maximum $15.9^{\circ}C$(in July), but after September, temperature inversion appeared. It was advantageous for the surface layer withdrawal to decrease cold damage and fog in downstream area and was possible to the middle and the bottom layers withdrawal from August to September. However, the reliability of model should be improved by accumulating the real-time information of water temperature.