• Title/Summary/Keyword: Surface uniformity

Search Result 680, Processing Time 0.028 seconds

Characteristics and Stability of Liquid Crystal Alignment for Interfacial Properties of Polyimide-Liquid Crystal (폴리이미드-액정 계면의 특성에 따른 액정 배향의 특성 및 안정성)

  • 동원석;이미혜;백상현
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.484-492
    • /
    • 2003
  • How the characteristics and stability of the rubbing-induced alignment of nematic liquid crystals (LCs) relate to the interfacial characteristics of LC-polyimide has been studied. The characteristics of the LC alignment (such as the LC texture, the pretilt angle, and the anchoring energy) and their thermal stability have been investigated for 5 polyimides synthesized for this work. The work showed that the rubbed polyimide alignment layer induces the strong LC anchoring and that the characteristics and stability of LC alignment are determined by the short-ranged interactions between LC and polyimide molecules at the alignment layer surface. The increased flexibility of the polyimide accelerates thermal imidization, increases the pretilt angle, and improves the alignment stability. It also turned out that fluorination of the polyimide tends to deteriorate the alignment uniformity and stability. No distinct differences in the alignment characteristics were shown for the aromatic- and alicyclic-dianhydride polyimides.

CMP of BTO Thin Films using $TiO_2$ and $BaTiO_3$ Mixed Abrasive slurry ($BaTiO_3$$TiO_2$ 연마제 첨가를 통한 BTO박막의 CMP)

  • Seo, Yong-Jin;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.68-69
    • /
    • 2005
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant. It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the self-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS), respectively. The removal rate of BTO thin film using the$ BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%. The sufficient within-wafer non-uniformity (WIWNU%)below 5% was obtained in each abrasive at all concentrations. The surface morphology of polished BTO thin film was investigated by atomic force microscopy (AFM).

  • PDF

Preparation of MgO Protective layer by reactive magnetron Sputtering (반응성 스퍼트링에 의한 MgO 유전체 보호층 형성에 관한 연구)

  • Ha, H. J.;Lee, W. G.;Ryu, J. H.;Song, Y.;Cho, J. S.;Park, C. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.59-62
    • /
    • 1996
  • Plasma displays (PDP) as a large area wall-hanging display device are rabidly developed with flat CRT, TPT LCD and etc. Especially, AC Plasma Display Panels(AC PDPs) have the inherent memory function which is effective for large area displays. The memory function in AC PDPs is caused by the accumulation of the electrical charge on the protecting layer formed on the dielectric layer. This MgO protective layer prevents the dielectric layer from sputtering by ion in discharge plasma and also has the additional important roll in lowering the firing voltage due to the large secondary electron emission coefficient). Until now, the MgO Protective layer is mainly formed by E-Beam evaporation. With increasing the panel size, this process is difficult to attain cost reduction, and are not suitable for large quantity of production. To the contrary, the methode of shuttering are easy to apply on mass production and to enlarge the size of the panel and shows the superior adhesion and uniformity of thin film. In this study, we have prepared MgO protective layer on AC PDP Cell by reactive magnetron sputtering and studied the effect of MgO layer on the surface discharge characteristics of ac PDP.

  • PDF

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.

Process Characteristics of Atmospheric Pressure Plasma for Package Substrate Desmear Process (패키지 기판 디스미어 공정의 대기압 플라즈마 처리 특성)

  • Ryu, Sun-Joong
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.337-345
    • /
    • 2009
  • When the drill hole diameter for the package substrate is under $100{\mu}m$, the smear in the drill hole cannot be eliminated by wet desmear process only. We intended to change the substrate's hydrophobic characteristics to hydrophilic characteristics by adapting the atmospheric pressure plasma prior to the wet desmear process. Atmospheric pressure plasma process was made as the inline type equipment which is adequate for the package substrate's manufacturing process and remote DBD type electrodes were used for the equipment. As the result of atmospheric pressure plasma processing, the contact angle of the substrate was enhanced from 71 degree to 30 degree. Dielectric film thickness, drill hole diameter and surface roughness were measured to evaluated the characteristics of the wet desmear process in case of plasma processing and in case of none. By the measurement, it was analyzed that the process uniformity within the whole panel was largely enhanced. Also, it was verified that the smear in the drill hole was eliminated efficiently which was analyzed by the SEM image of the drill hole.

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF

A Synthesis of $(Ba_{1-x}Sr_x)TiO_3$ Powders by Sol-Gel Route (졸-겔법을 이용한$(Ba_{1-x}Sr_x)TiO_3$분말합성)

  • Kim, Young-Seok;Kim, Duk-Jun;Kim, Hwan
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 1992
  • Using $Ba(OH)_2{\cdot}8H_2O, \;Sr(OH)_2{\cdot}8H_2O$ and $Ti(i-OC_3H_7)_4$, fine $(Ba_{1-x}, \;Sr_{x})TiO_3$ powders were synthesized through sol-gel process. The particle size of the powders calcined at $700^{\cric}C$ proved to be 20-40nm by the observation of TEM micrographs and measurement of BET specific surface area. The analysis of XRD patterns showed that the phase of the powders was cubic, and it was identified with the lattice parameters determined through XRD patterns and the shift of (112) peaks that the solid solution powders were synthesized. It was expected through the analysis of relative ratio of cations and the uniformity of compositions in the powders examined by EDAX analysis and relative dielectric constant measurements for sintered body that the distribution of cations was uniform in particle unit.

  • PDF

Synthesis of vertically aligned silicon nanowires with tunable irregular shapes using nanosphere lithography

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • Silicon nanowires (SiNWs), due to their unusual quantum-confinement effects that lead to superior electrical and optical properties compared to those of the bulk silicon, have been widely researched as a potential building block in a variety of novel electronic devices. The conventional means for the synthesis of SiNWs has been the vapor-liquid-solid method using chemical vapor deposition; however, this method is time consuming, environmentally unfriendly, and do not support vertical growth. As an alternate, the electroless etching method has been proposed, which uses metal catalysts contained in aqueous hydrofluoric acids (HF) for vertically etching the bulk silicon substrate. This new method can support large-area growth in a short time, and vertically aligned SiNWs with high aspect ratio can be readily synthesized with excellent reproducibility. Nonetheless, there still are rooms for improvement such as the poor surface characteristics that lead to degradation in electrical performance, and non-uniformity of the diameter and shapes of the synthesized SiNWs. Here, we report a facile method of SiNWs synthesis having uniform sizes, diameters, and shapes, which may be other than just cylindrical shapes using a modified nanosphere lithography technique. The diameters of the polystyrene nanospheres can be adjustable through varying the time of O2 plasma treatment, which serve as a mask template for metal deposition on a silicon substrate. After the removal of the nanospheres, SiNWs having the exact same shape as the mask are synthesized using wet etching technique in a solution of HF, hydrogen peroxide, and deionized water. Different electrical and optical characteristics were obtained according to the shapes and sizes of the SiNWs, which implies that they can serve specific purposes according to their types.

  • PDF

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

Optimization of the Preparation of Rice-based Infant Foods Using Freeze Drying Process (냉동건조를 이용한 쌀기본 이유식 제조에 있어서 건조조건의 최적화)

  • Kim, Kwang-Ok;Choi, Ho-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.680-689
    • /
    • 1995
  • Rice based infant foods of carrot, of beef, and of egg for 4-6 month old infants were prepared using freeze drying (FD) process. The optimum moisture content prior to FD and the plate temperature in the drier were determined with the use of response surface methodology. For all the infant foods under this study, FD time was longer as the initial moisture content was higher and the plate temperature was lower. Brittleness of the dried infant foods increased as the moisture content decreased and the plate temperature increased. Among the sensory attributes, hydration rate, uniformity, and smoothness were greater with increased moisture content and with decreased plate temperature. Ease to spoon increased as moisture content increased and mouthcoating increased as both the moisture content and the plate temperature increased. Optimum moisture content and plate temperature for the FD of carrot, beef and egg foods were 88.5% and $34^{\circ}C$, 88.5% and $28^{\circ}C$, and 87.3% and $39^{\circ}C$, respectively.

  • PDF