• 제목/요약/키워드: Surface treatment.

검색결과 8,508건 처리시간 0.04초

UV조사를 통한 PET의 표면개질 (제1보) -화학구조 변화 및 표면특성 변화- (Surface Modification of PET Irradiated by Ultra-Violet (Part I) -Transformation of Chemical Structure and Surface Properties-)

  • 최혜영;이정순
    • 한국의류학회지
    • /
    • 제29권3_4호
    • /
    • pp.561-568
    • /
    • 2005
  • The irradiation of Ultra-Violet (UV) is an efficient treatment for polymer to improve hydrophilic properties. 4-Channel PET knit fabrics were treated with UVA and UVC to develop functional and environment-friendly fabric. The fabric was treated with various treatment times and distances from UV lamps having different wavelength. FT-IR and XPS investigated the chemical changes. To confirm the change of surface properties, contact angle, surface energy and SEM were examined. The study of UV as a treatment for PET knit fabric shows significant changes in chemical and surface properties, which is proved by analyses. FT-IR and XPS analyses prove the augmentation of carboxylic, Hydrophilic groups on the surfaces treated by UV. The increase of water contact angle and surface energy means more water wettable and surface energy of PET film was substantially increased by UV irradiation time. The ageing after surface treatment had little influence on the surface energy of the irradiated PET film. SEM proves the surface modification of PET such as etching, bubble and crack. The negative effects are increased in accordance with increasing treatment time.

치과용 지르코니아 표면처리방법에 따른 지르코니아와 전장용 도재의 결합강도 관찰 (Shear Bond Strength of Zirconia and Ceramics according to Dental Zirconia Surface Treatment)

  • 이광영;최성민
    • 대한치과기공학회지
    • /
    • 제41권4호
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: The dental CAD / CAM system has been popular with the development of the digital dental industry. Zirconia is a typical material in dental CAD / CAM systems. Zirconia crowns are classified into single layer and double layer. This study is about the double layer crown of zirconia. The surface roughness, bond strength and fracture patterns of the zirconia surface were observed. Methods: Zirconia blocks were cut using a low speed cutter. Sintered to form a plate shape (6mm × 6mm × 3mm). The prepared specimens were surface treated in four ways. Surface roughness and bond strength were measured. And the fracture pattern was observed. Results: Result of surface treatment of zirconia. The surface roughness test results were as ET 2.87 ㎛, ST 2.67 ㎛, LT 2.44 ㎛, AT 2.41 ㎛, CN 2.08 ㎛ order. Bond Strength results were as LT 25.09 MPa, AT 23.27 MPa, ST 21.27 MPa, ET 21.09 MPa, CN 16.12 MPa order. Fracture patterns showed cohesive failure of 25-50% of the bond area. Conclusion: Surface roughness, bond strength and fracture pattern of the zirconia surface were observed. Etching the surface treatment of zirconia materials has been shown to affect the surface roughness. Zirconia special binder treatment has been shown to affect the bond strength improvement.

강교 보수도장의 표면처리를 위한 임펠라 블라스트와 스틸볼의 상관관계 분석을 통한 블라스트 효율 향상 (Improvement of Blast Efficiency by Correlation Analysis of Impella Blast and Steel Balls for Surface Treatment of Steel Bridges)

  • 장병하;장동욱;서명국;이호연;박재현
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.8-15
    • /
    • 2022
  • The demand for the re-painting of steel bridges is increasing, but surface treatment is still centered on human resources for on-site re-painting processes. Worker safety accidents continue to occur because the work is performed in a narrow space. Recently, PS balls with excellent surface treatment have been used for blasting, but the working environment is poor due to the large amount of dust generated. In this study, an effective surface treatment method using impeller blasting equipment was developed. The correlation between steel ball size, impeller rotation speed, and exposure time was studied to optimize the efficiency of the surface treatment.

Effect of surface Treatment on Piston Wear in the Oil Hydraulic Piston Pump

  • Kim, Jong Ki;Park, Kyung Min;Oh, Seok Hyung;Jung, Jae Youn
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.17-21
    • /
    • 2001
  • Surface treatment technologies are frequently used to improve mechanical properties of surface layers of machinery components in many practical situations. Surface hardness of piston in the oil hydraulic piston pumps is very important about wear resistance. To improve hardness, wear resistance of the oil hydraulic axial piston pump, it is needed to know the surface layer characteristics in the sliding contact parts. This paper reports an experimental study on surface treatment characteristics in the piston of the oil hydraulic axial piston pump. We investigated the surface wear of a piston between untreated and nitriding-treated surfaces. We obviously observed that the surface hardness of piston in the oil hydraulic axial piston pump plays an important role to have wear resistance and remain a longer life.

  • PDF

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

Polished Wafer와 Epi-Layer Wafer의 표면 처리에 따른 표면 화학적/물리적 특성 (Comparison on the Physical & Chemical Characteristics in Surface of Polished Wafer and Epi-Layer Wafer)

  • 김진서;서형탁
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.682-688
    • /
    • 2014
  • Physical and chemical changes in a polished wafer and in $2.5{\mu}m$ & $4{\mu}m$ epitaxially grown Si layer wafers (Epilayer wafer) after surface treatment were investigated. We characterized the influence of surface treatment on wafer properties such as surface roughness and the chemical composition and bonds. After each surface treatment, the physical change of the wafer surface was evaluated by atomic force microscopy to confirm the surface morphology and roughness. In addition, chemical changes in the wafer surface were studied by X-ray photoemission spectroscopy measurement. Changes in the chemical composition were confirmed before and after the surface treatment. By combined analysis of the physical and chemical changes, we found that diluted hydrofluoric acid treatment is more effective than buffered oxide etching for $SiO_2$ removal in both polished and Epi-Layer wafers; however, the etch rate and the surface roughness in the given treatment are different among the polished $2.5{\mu}m$ and $4{\mu}m$ Epi-layer wafers in spite of the identical bulk structural properties of these wafers. This study therefore suggests that independent surface treatment optimization is required for each wafer type, $2.5{\mu}m$ and $4{\mu}m$, due to the meaningful differences in the initial surface chemical and physical properties.

아크 금속 용사 표면 처리 방법에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가 (Evaluation of physical properties of Zn-Al metal coating according to arc metal spray surface treatment method)

  • 장종민;김영관;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.89-90
    • /
    • 2022
  • Arc metal spraying is a widely used method for improving the performance of construction structures such as corrosion resistance and electromagnetic wave shielding. However, when arc metal spraying is applied to a concrete structure, adhesion performance may deteriorate. Therefore, the effect of each surface treatment method on the physical properties between the arc metal spray coating and concrete was reviewed by evaluating the deposition efficiency and adhesion performance according to the arc metal spray surface treatment method (surface reinforcing agent, roughening agent, and sealing agent). As a result, it is suggested as an optimal surface treatment condition to induce non-interface failure by using a roughening agent and to improve the properties of concrete and metal coatings by applying a surface reinforcing agent and sealing agent.

  • PDF

고력볼트 접합부표면의 방식도장변수에 따른 체결력 평가 (Evaluation on Clamping Force of High Strength Bolts By Coating Parameters of Faying Surfaces)

  • 나환선;이현주
    • Corrosion Science and Technology
    • /
    • 제11권2호
    • /
    • pp.48-55
    • /
    • 2012
  • Clamping force of a high strength bolt is reduced by a certain period of time after the initial set-up. In case of special treatments on faying surfaces such as protective coating, clamping force is relaxed more severely. Tests for slip critical joints subject to various faying surface parameters were conducted. Five different surface treatments were tested including mill scale surface, blast surface, rust surface and coated surfaces. Each specimen was composed of F10T M20 of high strength bolts and steel plates. Based on the result of slip coefficient test, blast treatment surface showed 0.59, rust treatment surface showed 0.54 and inorganic zinc treatment surface exhibited 0.44. Clean mill treatment surface and red lead paint treatment surface were 0.23, 0.21 respectively. It is identified that the slip coefficient in Korean structural design guide should be determined for various surface conditions. Subsequently from long term relaxation test of ASTM A 490 high strength bolts, relaxation of no-coated surfaces such as blast, clean mill, rust treatment, the loss of initial clamping load was 10.5%, 13.6% and 7.9% for 1,000 hours, while the loss of initial clamping force was reached as 15.0%, 18.7% more than the required redundancy 10% in case of inorganic zinc and red lead painted treatment. It is required that the limit of relaxation on coated faying surface should be established separately for various surfaces.

Poly(ethylene Terephthalate) 필름의 표면모폴로지와 표면특성 (The Surface Morphology and Characteristics of Poly (ethylene Terephthalate) Film)

  • 강인숙;문미화;나종주
    • 한국의류학회지
    • /
    • 제34권11호
    • /
    • pp.1880-1888
    • /
    • 2010
  • This study was a preliminary investigation of the influence of surface characteristics of substrates on the detergency of particulate soil. A PET film was surface modified with NaOH and DMF for different times. The surface morphology of the film was scanned by AFM and the surface energies were calculated from the measured contact angles between several solutions and film based on a geometric mean and the Lewis acid base method. The surface morphology of the PET film treated with NaOH and DMF became more etched and swelled with an increased treatment time, respectively. The surface roughness and surface area of film treated with NaOH enlarged with increased treatment time. However, the coefficient of friction of film treated with NaOH and coefficient of friction, surface roughness, and surface area of film treated with DMF increased and then decreased with increased treatment time. The contact angle of film treated with DMF decreased with increased treatment time in water and surfactant solution; however, the effect of treatment time on the contact angle was different in both solutions for film treated with NaOH. By the treatment of PET film with NaOH and DMF, the polar group of the surface energy increased and the nonpolar group decreased; however, the change of total surface energy was not significant.

내구수명 증진을 위한 콘크리트 구조물용 표면처리공법 개발 (Development of Surface Treatment Systems for Concrete Structures to Extend Service Life)

  • 이창수;윤인석;이규동;박종혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.255-261
    • /
    • 2002
  • Concrete structures stand in poor surrounding than it has ever been met before, because they are installed in severe conditions such as chloride penetration. $CO_2$ gas, water and so on. Therefore, the countermeasure to efficiently protect from the deterioration of concrete structures should be urgently considered. From this point of view, this study was aimed to develop surface treatment systems for concrete structures, which cover physical properties, long term durability and economic consideration. Developing the optimal surface treatment materials, powder type polymer or liquid type polymer was added to inorganic base materials. Three surface treatment materials which had shown best results in primary tests were selected and durability tests were fulfilled. Consequently optimum surface treatment material was developed. The surface treatment materials, which were developed through this study, can efficiently extend the service life of concrete structures. As a result, the life cycle cost should be reduced and the waste of material resources would be cut down.