• Title/Summary/Keyword: Surface tension effect

Search Result 390, Processing Time 0.026 seconds

Effect of Solvents on the Structure of Electrospun PVP Fiber (PVP의 전기방사 섬유 제조에서 용매에 따른 구조 변화)

  • Park, Ju-Young;Lee, In-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.484-490
    • /
    • 2008
  • Electrospun of PVP (polyvinylpyrrolidone) ultra fine fibers were fabricated using various solvents including methanol, ethanol, 2-propanol, butanol, acetone, methylene chloride, and DMF, which possess different properties such as boiling point, dielectric constant, and dipole moment. Electrospun PVP fiber was influenced by viscosity, conductivity, and surface tension of spinning solution. Therefore, the electrospun PVP fiber was successfully prepared under critical conditions of viscosity > $0.114kg/m{\cdot}s$, conductivity > 1.02 mS/m, surface tension < 30.0 mN/m. In case of an ethanol solvent system, average diameter of PVP fiber increased from 1701 nm to 5454 nm as increased the applied voltage from 10 kV to 20 kV.

Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam

  • Zhu, Wenjun;Francois, Raoul
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.121-136
    • /
    • 2013
  • Tension tests were carried out to investigate the effect of the corrosion pattern on the ductility of tension bars extracted from a 26-year-old corroded reinforced concrete beam. The tensile behavior of corroded bars with different corrosion patterns was examined carefully, as were two non-corroded bars extracted from a 26-year-old control beam. The results show that corrosion leads to an increase in the ratio of the ultimate strength over the yield strength, but reduces the ultimate strain at maximum force of the reinforcement. Both the corrosion pattern and the corrosion intensity play an important role in the ductile properties. The asymmetrical distribution of the corrosion around the surface is a decisive factor, which can influence the ultimate strain at maximum force more seriously.

Fatigue reliability analysis of welded joints of a TLP tether system

  • Amanullah, M.;Siddiqui, N.A.;Umar, A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.331-354
    • /
    • 2002
  • Tethers of Tension Leg Platform (TLP) are a series structural system where fatigue is the principal mode of failure. The present study is devoted to the fatigue and fatigue fracture reliability study of these tethers. For this purpose, two limit state functions have been derived. These limit state functions are based on S-N curve and fracture mechanics approaches. A detailed methodology for the reliability analysis has then been presented. A sensitivity analysis has been carried out to study the influence of various random variables on tether reliability. The design point, important for probabilistic design, is located on the failure surface. Effect of wind, water depth, service life and number of welded joints are investigated. The effect of uncertainties in various random variables on tether fatigue reliability is highlighted.

Characteristics for Nanofluid Droplet Evaporation on Heated Surface at Boiling Temperature of Base Liquid (비등점의 가열 표면에서 나노유체 액적의 증발 특성)

  • Kim, Dae Yun;Jung, Jung-Yeul;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • This study aims to experimentally investigate the evaporation characteristics of nanofluid droplet on heated surface at boiling temperature of DI-water. In particular, textured surface was used to examine the effect of wettability on evaporation. At the initial stage of evaporation process, dynamic contact angle (DCA) of nanofluid droplet with 0.01 vol.% concentration on textured surface rapidly increased over its equilibrium contact angle by generated large bubble inside the droplet due to lower wettability. However, contact angle of nanofluid droplet with higher concentration on textured surface decreased with surface tension. In addition, total evaporation time of droplet on textured surface was considerably delayed due to reduction of contact area between droplet and solid surface. Thus, evaporation characteristics were highly affected by the nanofluid concentration and surface wettability.

The Effect of Surface Tension on Shear Wave Velocities according to Changes of Temperature and Degree of Saturation (온도와 포화도의 변화에 의한 표면장력이 전단파 속도에 미치는 영향)

  • Park, Jung-Hee;Kang, Min-Gu;Seo, Sun-Young;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.285-293
    • /
    • 2012
  • The surface tension, which is generated in the unsaturated soils, increases the stiffness of the soils. The objective of this study is to estimate the effect of the surface tension, which varies according to the temperature, on the shear wave velocity. Nine specimens, which have the different degree of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60%, 80%, 100%), are prepared by using sand-silt mixtures. Experiments are carried out in a nylon cell designed for the measurement of shear waves. A pair of bender elements, which are used for the generation and detection of shear waves, is installed as a cross-hole type. The shear waves are continuously monitored and measured as the temperature of specimens decreases from $15^{\circ}C$ to $1^{\circ}C$. The results show that shear wave velocities of the fully saturated and fully dried specimens change a little bit as the temperatures of specimens decrease. However, the shear wave velocities of the specimens with the degree of saturations of 2.5%, 5%, 10%, 20%, 40%, 60% and 80% continuously increase as temperature decreases from $15^{\circ}C$ to $1^{\circ}C$. Furthermore, a fully saturated specimen is dried at the temperature of $70^{\circ}C$ in order to observe the shear waves according to degree of saturation. The shear wave velocities measured at the temperature of $70^{\circ}C$ are generally lower than those measured at temperature of $15^{\circ}C$. This study demonstrates that the dependence of shear wave velocities on the temperature according to the degree of saturation should be taken into account in both laboratory and field tests.

Numerical Investigation on the Effect of Surface Tension Change of Liquefied $CO_2$ Droplets on their Ascending Speed (액화이산화탄소 유적의 수직 상승속도에 미치는 표면장력 변화의 영향에 대한 수치연구)

  • Cho, Yoon-Tae;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.160-163
    • /
    • 2008
  • $CO_2$ ocean sequestration is being considered as a way to earn a frame of time to change other industrial life pattern to overcome the global warming crisis. The method is to dilute the captured $CO_2$ into ocean by ejecting the liquefied $CO_2$ through nozzles. The main issue of such method is the effectiveness and safety, and in both problems the rising speed of those LCO2 droplet is the key parameter. In this paper, the rising speed of LCO2 droplets is numerically studied including the effect of the surfactant which can be residing along the density interface of the droplets. A front tracking method with a simple surface tension model is developed and the rising speed of the droplets is carefully investigated with varying the various parameters. It is demonstrated that the variable surface tension can change the deformation of the droplet, the flow near the interface, and the rising speed.

  • PDF

Effect of Substrate Surface Water on Adhesive Properties of High Flowable VA/VeoVa-modified Cement Mortar for Concrete Patching Material (단면수복용 고유동성 VA/VeoVa 개질 시멘트 모르타르의 부착특성에 대한 피착면 표면수의 영향)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.94-104
    • /
    • 2013
  • Experiments were divided into two parts; one part is to understand the basic properties of high flowable VA/VeoVa-modified cement mortar with different polymer cement ratio (P/C) and the weight ratio of fine aggregate to cement (C:F) and the other part is to investigate the effect of surface water spread on the concrete substrate on adhesion in tension. To understand the basic performance, the specimens were prepared with proportionally mixing VA/VeoVa redispersible powder, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Here, P/C were 10, 20, 30, 50 and 75% and C:F were 1:1 and 1:3. As the change of P/C and C:F unit weight, flow test, crack resistance and adhesion in tension were measured. Three specimens with good adhesion properties were selected among specimens with different P/C and C:F. The effect of surface water evenly sprayed on concrete substrate on adhesive strength is investigated. The results show that surface water on concrete substrate increases the adhesion in tension of high flowable VA/VeoVa-modified cement mortar and additionally improves the flowability compared to the non-sprayed case.

Dynamic modeling of embedded curved nanobeams incorporating surface effects

  • Ebrahimi, Farzad;Daman, Mohsen
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.255-267
    • /
    • 2016
  • To investigate the surface effects on vibration of embedded circular curved nanosize beams, nonlocal elasticity model is used in combination with surface properties including surface elasticity, surface tension and surface density for modeling the nano scale effect. The governing equations are determined via the energy method. Analytically Navier method is utilized to solve the governing equations for simply supported at both ends. Solving these equations enables us to estimate the natural frequency for circular curved nanobeam including Winkler and Pasternak elastic foundations. The results determined are verified by comparing the results by available ones in literature. The effects of various parameters such as nonlocal parameter, surface properties, Winkler and Pasternak elastic foundations and opening angle of circular curved nanobeam on the natural frequency are successfully studied. The results reveal that the natural frequency of circular curved nanobeam is significantly influenced by these effects.

Surface treatment of polyethylene terephthalate films by corona discharge (코로나방전에 의한 polyethylene terephthalate 필름의 표면처리)

  • 김명룡
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.316-323
    • /
    • 1995
  • A vital step in magnetic tape manufacturing is the surface modification of polymer substrate prior to ink application. A critical element for good adhesion of magnetic ink on polymeric substrate is the ability to join ink in cost-effective manner. Corona discharging is one of the effective methods of modifying polymer surface to improve adhesion while maintaining the desirable properties of the film itself. Surface treatment by corona which is exposure of film surface to electron or ion bombardment, rather than mere exposure to active species, like atomic oxygen or ozone, can enhance adhesion by removing contaminant, electret, roughening surface, and/or introducing reactive chemical groups. Reactive neutrals, ions, electron and photons generated during the corona treatment interact simultaneously with polymers to alter surface chemical composition, wettability, and thus film adhesion. However, it is highly recommended that extensive chains scission be avoided because it can lead to side-effect by forming sticky matter, resulting in dropouts. This paper reviews principles of surface preparation of polymer substrate by corona discharging. In addition, the experimental section provides a description of parameter optimization on corona discharging treatment and its side-effect. Experimental results are discussed in terms of surface wetting as determined by contact angle measurements.

  • PDF

Effect of aerodynamic drag force on liquid metal convection in GTA welding (GTA 용접시 발생하는 용융금속의 유동에 미치는 공기역학적 향력의 영향)

  • 나석주;김성도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.575-583
    • /
    • 1991
  • The weld pool convection problem that occurs during the stationary GTA welding has been studied, considering the four driving forces for weld pool convection, i.e., the electromagnetic force, the buoyancy force, the aerodynamic drag force, and the surface tension force at the weld pool surface. In the numerical simulation, the difficulties associated with the irregular moving liquid-solid interface have been successfully overcome by adopting a Boundary-Fitted Coordinate system. In the experiments to show the validity of the numerical analysis, a deep periphery and shallow centerpentrated weld pool shape was observed from the etched specimen. It could be revealed that this type of weld pool shape could be simulated, only when some of aerodynamic drag force distributions are considered. Although slight disagreement arose, the calculated and the observed weld pool shapes were in a reasonable agreement.