• Title/Summary/Keyword: Surface strain

Search Result 1,797, Processing Time 0.029 seconds

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Improved Optimal Approximated Unfolding Algorithm of a Curved Shell Plate with Automatic Mesh Generation (자동 메쉬 생성을 적용한 향상된 자유 곡면의 최적 근사 전개 알고리즘)

  • Ryu C.H.;Shin J.G.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • Surfaces of many engineering structures, especially, those of ships are commonly made out of either single- or double-curved surfaces to meet functional requirements. The first step in the fabrication process of a three-dimensional design surface is unfolding or flattening the surface, otherwise known as planar development, so that manufacturers can determine the initial flat plate which is required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both single- and double-curved surfaces, is established by minimizing the strain energy of deformation from its planar development to the design surface. The unfolding process is formulated into a constrained nonlinear programming problem, based on the deformation theory and finite element. Constraints are subjected to the characteristics of the fabrication method. And the design surface, or the curved shell plate is subdivided by automatic mesh generation.

The Analysis of Excavation Behavior Considering Small Strain Stiffness (미소변형율 강성을 고려한 지반굴착 해석)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper describes research on the prediction of the vertical displacement of surface, horizontal displacements and bending moments in two anchored retaining wall for an excavation by a finite element program. It is very important to consider the appropriate constitutive model for the numerical analysis in excavation behavior. It is shown in this paper that the analyses of excavation considering small strain stiffness gives the more reasonable prediction of the vertical displacement of surface. and the parametric study on the small strain stiffness parameters for excavation analysis has been analysed.

  • PDF

Through-Thickness Variation of Strain and Microstructure of AA1050 Processed by High Speed Hot Rolling (고속열간압연가공된 AA1050의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.492-496
    • /
    • 2008
  • The through-thickness variations of strain and microstructure of high-speed hot rolled 1050 pure aluminum sheet were investigated. The specimens of 1050 aluminum were rolled at temperatures ranging from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched in water at an interval of 30ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Recrystallization occurred in the surface regions of the specimen rolled to reduction of 65% at $510^{\circ}C$, while only recovery occurred in the other regions.

An Experimental Study onthe Detection of Tool Failure I Face Milling Processes (정면밀링가공시 공구 파손 검출에 관한 실험적 연구)

  • 김우순
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.73-79
    • /
    • 1996
  • In this paper present a new technique (strain-telemetering)for detection of coated tool failure in face milling processes. In the cutter body the strain signals received fro the transmitter is transformed in to frequency modulation(FM) signals in face milling processes. A receiver which is place near by the Vertical milling machine receives the FM signals, then the signals will be sent to a computer which determines whether th tool is failure. And machined surface of workpiece is detected by the SEM. In this paper, A on-line monitoring of the tool failure detection system based on the strain -telemetering apparatus has bee represented.

  • PDF

Through-Thickness Variation of Strain and Microstructure of AA5052 with Rolling Conditions During High Speed Hot Rolling (고속열간압연시 압연조건에 따른 AA5052의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.265-269
    • /
    • 2009
  • The through-thickness variations of strain and microstructure during high-speed hot rolled 5052 aluminum alloy sheet were investigated. The specimens were rolled at temperature ranges from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Dynamic recrystallization occurred in the surface regions of the specimen rolled under conditions of high temperatures or high rolling reductions.

Cosmical Analysis and Interfacial Characterization of Biosurfactants formed by Rhodococcus. Sp. strain IGTS8 during the Biodesulfurization Process (미생물 탈황 공정 중 Rhodococcus sp. strain IGTS8에 의하여 생성되는 Biosurfactants의 성분 분석 및 계면특성)

  • 박홍우;박기돈;오성근
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.302-306
    • /
    • 2002
  • The chemical analysis and surface chemical properties of biosurfactant formed by Rhodococcus sp. strain IGTS8, which is widely used in biodesulfurization process, in hexadecane/water mixture have been studied. For the chemical analysis, TLC technique was employed. The surface tension, CMC, and emulsion stability of biosurfactant solution were also investigated. The major components of biosurfactant formed by Rhodococcus sp. strain IGTS8 were glucose mycolate and trehalose monomycolate. The CMC of aqueous biosurfactant solution was 0.1 ~0.15 g/100 mL of Water at pH 6.0-6.5 and pH 10~10.5. But the demulsification was faster at pH 10 than at pH 6.3.

Numerical Study of Interaction between Hydrogen and Hydrocarbon Flames (수소화염과 탄화수소화염의 상호작용에 관한 수치계산 연구)

  • Oh, Chang-Bo;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • Numerical simulations were performed for the prediction of the flame structure during the interaction between hydrogen and hydrocarbon flames. A counterflow flow geometry was introduced to establish the interacting two flames. Methane was used as a representative hydrocarbon fuel in this study. A well-known numerical code for the counterflow flame, OPPDIF, was used for the simulations. The detailed chemistry was adopted to predict the flame structure reasonably. The interaction of two one-dimensional premixed flames established in counterflow burner was investigated with the global strain rate and velocity ratio. It was found that the maximum temperature located near the methane flame surface while the heat release rate of methane was lower than hydrogen flame. The flame thickness become narrow with increasing the velocity ratio while the global strain rate was fixed. The local strain rate and heat release rate at the methane flame surface were correlated with the global strain rate, while those at the hydrogen flame were not correlated with the global strain rate. However, the maximum temperature of the interacting flames was correlated with the global strain rate.

Effect of presurfacing on drying rate and drying defect of Quercus grosseserrata BI. (전평삭처리(前平削處理)가 물참나무의 건조속도(乾燥速度)와 건조결함(乾燥缺陷)에 미치는 영향(影響))

  • Han, Gyu-Seong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.29-39
    • /
    • 1986
  • To investigate the effect of presurfacing, both 25mm rough and pre surfaced oak boards (Quercus grosseserrata BI.) were dried in the same dry kiln condition. Drying curves, drying strains and drying defects of rough and presurfaced boards were compared. The results obatained are as follows. 1. Average drying rate of rough and presurfaced boards from green to 10% M.C. was 0.276%/hr. and 0.284%/hr., respectively. 2. At the early stage of drying, in case of rough boards, maximum tensile strain of outer slices was $-24.2{\times}10^{-4}$mm/mm and maximum compressive strain of innermost slices was $13.0{\times}10^{-4}$mm/mm, and in case of pre surfaced boards, maximum tensile strain of outer slices was $-14.5{\times}10^{-4}$mm/mm and maximum compressive strain of innermost slices was $28.1{\times}10^{-4}$mm/mm. And in both cases, stress reversal occurred at about 40% M.C.. 3. Maximum surface checking appeared at about 40% M.C.. Of the 10 rough boards. 6 hoards contained surface checks, but presurfaced boards did not contained surface checks after drying. And the results of end checking were similar to those of surface checking. But, honeycomb was not found in both cases. 4. Board shrinkage. warp and casehardening of presurfaced boards were similar to those of rough boards. But, collapse of prsurfaced boards was less than that of rough boards.

  • PDF