• Title/Summary/Keyword: Surface state density

Search Result 311, Processing Time 0.024 seconds

Thermal Oxidation Behavior and Electrical Characteristics of Silicon depending on the Crystal Orientation (결정 배향에 따른 Si의 열산화 거동 및 전기적 특성)

  • 우현정;최두진;양두영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.753-758
    • /
    • 1994
  • (100) Si and 4$^{\circ}$off (100) Si were oxidized in dry oxygen, and the differences in thermal oxidation behavior and electrical characteristics between two specimens were investigated. Ellipsometer measurements of the oxide thickness produced by oxidation in dry oxygen from 1000 to 120$0^{\circ}C$ showed that the oxidation rates of the 5$^{\circ}$ off (100) Si were more rapid than those of the (100) Si and the differences between them decreased as the oxidation temperature increased. The activation energies based on the parabolic rate constant, B for (100) and 4$^{\circ}$off (100) Si were 25.8, 28.6 kcal/mol and those on the linear rate constant, B/A were 56.8, 54.9 kcal/mol, respectively. Variation of C-V characteristics with the oxidation temperature showed that the flat band voltages were shifted positively and surface state charge densities decreased as the oxidation temperature increased, and the surface state charge density of the 4$^{\circ}$off (100) Si was lower than that of the (100) Si. Also considerable decrease in the density of oxidation induced stacking faults (OSF) for the 4$^{\circ}$off (100) Si was observed through optical microscopy after preferentially etching off the oxide layer.

  • PDF

A Study on the Performance of Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil of the Machine Tool (공작기계 절삭유 냉각용 낮은 핀관의 열전달 성능에 관한 연구)

  • 조동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.125-133
    • /
    • 1998
  • Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64mm height respectively are tested. A plain tube having same diameter as the finned tubes is also tested for comparison. In case of condensation CFC-11 condensates at saturation state of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube. The tube having fin density of 1299fpm and 30grooves has the best condensation overall heat transfer coefficient. However, as far as boiling heat transfer coefficient concerns, fin tubes with cave show higher value than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

Numerical Simulation of the Flow Patterns with Sloping Forest Canopies (경사진 산림지형에서의 자연유동에 대한 수치해석)

  • Yoon, Hyun-Gi;Stock, David E.;Yoo, Ki-Soo;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2008
  • Diurnal variation of the flow over a forest canopy on a mountain slope is simulated numerically. In the daytime, the earth surface is heated by the solar radiation and the flow goes up the mountain due to the buoyancy force, and during the night, the air is drained downward along the slope owing to the cooling of the surface by radiation. In this flow process the forest canopy that consists of leaf region and the trunk region plays a dominant role as a momentum sink to the flow, thus the modeling of the leaf area region and trunk region is critical to the successful flow simulation. In the present study, a field measurement in an experimental forest in the State of Oregon in the United States is numerically analyzed. The resistance to the flow in the leaf region is directly related to the leaf area density (LAD), and the trunk is modeled as a cylinder.

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Study of surface state density of hydrogenated amorphous silicon thinfilm transistors by admittance spectroscopy

  • Hsieh, Ming-Ta;Chang, Chan-Ching;Chen, Jenn-Fang;Zan, Hsiao-Wen;Yen, Kuo-Hsi;Shih, Ching-Chieh;Chen, Chih-Hsien;Lee, Yeong-Shyang;Chiu, Hsin-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.904-907
    • /
    • 2007
  • We reported a simplified circuit model to investigate the interface states and the quality of a-Si film based on a MIS structure using admittance spectroscopy. The model can be employed easily to monitor the fabrication process of thin-film transistor and to obtain the important parameters.

  • PDF

Surface Passivation Method for GaN UV Photodetectors Using Oxygen Annealing Treatment

  • Lee, Chang-Ju;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.252-256
    • /
    • 2016
  • Epitaxially grown GaN layers have a high surface state density, which typically results in a surface leakage current and a photoresponse in undesirable wavelengths in GaN optoelectronic devices. Surface passivation is, therefore, an important process necessary to prevent performance degradation of GaN UV photodetectors. In this study, we propose oxygen-enhanced thermal treatment as a simple surface passivation process without capping layers. The GaN UV photodetector fabricated using a thermal annealing process exhibits improved electrical and photoresponsive characteristics such as a reduced dark current and an enhanced photoresponsive current and UV-to-visible rejection ratio. The results of this study show that the proposed surface passivation method would be useful to enhance the reliability of GaN-based optoelectronic devices.

PLANT ROOT LENGTH DENSITY MEASUTEMENT USING IMAGE PROCESSING

  • Kim, Giyoung;David H.Vaughan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.792-801
    • /
    • 1996
  • A thinning algorithm -based image analysis technique was developed to measure corn root lengths. The root length measurement method was evaluated by comparing thread lengths measured by the image analysis system with actual thread lengths. The length measurement method accurately estimated actual thread lengths (less than 2% calculated error). Also, a rapid root length density measurement procedure, which utilizes the above root length measurement method, was developed to estimate corn root length density without washing the roots. Root length densities estimated from the cut soil surface of core samples taken from the field were paired with the root length densities determined from washed roots from the same soil core sample. A linear relationship between these two values was expected and was found. Eliminating the root washing procedure reduces the time required for measuring corn root length density substantially.

  • PDF

A Study on the Machining Characteristics of Electropolishing for Stainless Steel (스테인레스 강의 전해연마 가공특성에 관한 연구)

  • 박정우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.186-191
    • /
    • 1998
  • Electropolishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. If there is a Bailby layer, it will be recovered again. Electropolishing is normally used to remove a very thin layer of material on the surface of a metal component. The aim of this study is to determine the tendencies of electropolishing STS316L tubes in terms of current density, machining time, temperature, electrode gap and surface roughness.

  • PDF

Potential Profiles and Capacitances of an Ideally Polarizable Electrode/Hard Sphere Electrolyte System

  • Kim, Sang-Youl;Vedam, K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.487-493
    • /
    • 1990
  • A complete potential profile of an electrical double layer is calculated from a distribution function of charged particles based upon a model where the effect of a charged electrode and the finite size of ion are explicitly included. Electrons which are distributed on the electrode surface are assumed not to penetrate the electrode/electrolyte boundary. Formation of the constant density regions and their effects on potential and the electrical double layer capacitances are studied in great detail. The distribution of surface electrons as well as the constant density regions are found to be essential in characterizing the electrical double layer. The introduction of the ion size into the prior electrical double layer model of an ideally polarizable electrode/point charged electrolyte system, shows a great improvement in its characteristics mostly at negative potential region.

Mechanism of Formation of Three Dimensional Structures of Particles in a Liquid Crystal

  • West, John L.;Zhang, Ke;Liao, Guangxun;Reznikov, Yuri;Andrienko, Denis;Glushchenko, Anatoliy V.
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2002
  • In this work we report methods of formation of three-dimensional structures of particles in a liquid crystal host. We found that, under the appropriate conditions, the particles are captured and dragged by the moving isotropic/nematic front during the phase transition process. This movement of the particles can be enhanced significantly or suppressed drastically with the influence of an electric field and/or with changing the conditions of the phase transition, such as the rate of cooling. As a result, a wide variety of particle structures can be obtained ranging from a fine-grained cellular structure to stripes of varying periods to a course-grained "root" structures. Changing the properties of the materials, such as the size and density of the particles and the surface anchoring of the liquid crystal at the particle surface, can also be used to control the morphology of the three-dimensional particle network and adjust the physical properties of the resulting dispersions. These particle structures may be used to affect the performance of LCD's much as polymers have been used in the past.