• Title/Summary/Keyword: Surface ship

Search Result 1,002, Processing Time 0.024 seconds

Numerical Simulation of Turbulent Flow around KLNG Hull Form with Different Scale Ratio (다른 축척비를 가진 KLNG 선형주위 유동장 시뮬레이션)

  • Ha, Yoon-Jin;Lee, Young-Gill;Kang, Bong-Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, flow characteristics around the hull form of KLNG are investigated by numerical simulations. The numerical simulations of the turbulent flows with the free surface around KLNG have been carried out at Froude number 0.1964 using the FLUENT 6.3 solver with Reynolds stress turbulence model. Several GEOSIM models are adopted to consider the scale effect attendant on Reynolds number. Furthermore, a full scale ship is calculated and the result is compared with the numerical results of GEOSIM models. The calculated results of GEOSIM models and the full scale ship are compared with the experiment data of MOERI towing tank test and Inha university towing tank test. Moreover, wake distribution on the propeller plane of the full scale ship is estimated using the numerical results of GEOSIM models. The prediction result is directly compared with the simulation result in full scale.

Numerical Prediction of Ship Motions in Wave using RANS Method (RANS 방법을 이용한 파랑 중 선박운동 해석)

  • Park, Il-Ryong;Kim, Jin;Kim, Yoo-Chul;Kim, Kwang-Soo;Van, Suak-Ho;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.232-239
    • /
    • 2013
  • This paper provides the structure of a Reynolds Averaged Navier-Stokes(RANS) based simulation method and its validation results for the ship motion problem. The motion information of the hull computed from the equations of motion is considered in the momentum equations as the relative fluid motions with respect to a non-inertial coordinates system. A finite volume method is used to solve the governing equations, while the free surface is captured by using a two-phase level-set method and the realizable k-${\varepsilon}$ model is used for turbulence closure. For the validation of the present numerical approach, the numerical results of the resistance and motion tests for DTMB 5415 at two ship speeds are compared against available experimental data.

Wave Resistance under the Influence of the Draft and Water-plane Section Form of the Ship (흘수(吃水)와 수선면형상(水線面形狀)의 변화(變化)에 따른 조파저항(造波抵抗))

  • I.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.2
    • /
    • pp.9-14
    • /
    • 1979
  • Havelock was considered the wave resistance of a post extending vertically downwards through the water from the surface, its section by a horizontal plane being the same at all depths and having its breath small compared with its length. This enables us to elucidate certain points of interest in ship resistance. However, the ship has not infinte draft. So, the problem which is investigated in detail in this paper is the wave resistance of a mathematical quadratic model in a uniform stream. The author wishes to study the effect of viriation of draft. The form of the water-plane is varied while keeping in length and the cross sectional area constant. As a numerical example, we calculated the wave resistance for mathematical quadratic ship models. The results are compared with a post having infinite depth. The results are as follows; The models with finer ends have smaller wave resistance up to $V/\sqrt{L}=1.1{\sim}1.2$ than its mate with blunter ends, but above this speed the models with blunter ends have less wave resistance. According to the decrease of draft, the wave resistance gap between the models with blunter ends the models with finer ends decrease at high speed. In this case of T/L=0.025, the models with finer ends have less wave resistance than the models with blunter ends at high speed.

  • PDF

Prospect on IMO's Performance Standards for Protective Coatings (PSPC) Regulation for Ship's Water Ballast Tanks

  • Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.219-223
    • /
    • 2008
  • In 2006, as a means to minimize early corrosion failure of ships, thus to enhance marine safety, International Maritime Organization (IMO), proposed a mandatory regulation for Performance Standards for the Protective Coatings (PSPC) for ballast tanks of newly built ships to satisfy 15 years of target useful life. In this regulation, several unprecedented strict rules are adopted as minimum, mandatory requirements for protective coatings of ship's water ballast tanks, and all type of ships sailing international sea are subjected to this regulation which is to be effective as early as June of 2008. The PSPC addresses many technical issues in the areas of surface pretreatment (primary and secondary), coating materials, coating application procedure and inspection as well as necessary documentation. The PSPC rules are new and unproven concepts, which calls for rigorous incorporation of reality-based evidences currently available, since there are no practical experiences in terms of the validity of the PSPC rules. There has been much controversy surrounding these regulations and considerable effort has been made by both shipyards and ship owners alike to achieve a performance standard for ballast tank coatings, which is acceptable to all. In this paper, the background and overview of the PSPC rules are given, and several issues in the PSPC are reviewed as a base to achieve robustness of the proposed PSPC, which will serve as a means to minimize early corrosion and to ensure 15 year target useful life of ships.

Numerical Analysis of Ship Motions in Beam Sea Using Unsteady RANS and Overset Grid Methods (비정상 RANS 법과 중첩격자계를 이용한 횡파중 선박운동 수치해석)

  • Park, Il-Ryong;Hosseini, Seyed Hamid Sadat;Stern, Frederick
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.109-123
    • /
    • 2008
  • The present paper presents the CFD result for a beam wave test case. An ONR tumblehome ship model with bilge keels is used. The beam wave test is for zero forward speed and roll and heave 2DOF with wave slope $a_k=0.156$ and wavelength ${\lambda}=1.12L_{PP}$, with $L_{PP}$ the ship length. The problems is solved numerically with an unsteady Reynolds averaged Navier-Stokes approach. The free surface flow is computed using a single-phase level-set method and the motions in each time step are integrated using a predictor-corrector iteration approach which uses dynamic overset grids moving with relative ship motion. The predicted CFD results for motions and forces are compared with experimental data, showing a reasonable agreement.

Study on Estimating the Shape of a Ship by Integrating Radar Images

  • Ishiwata, Junya;Fujisaka, Takahiko;Imazu, Hayama
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.71-78
    • /
    • 2006
  • The image of an object obtained by the radar is not corresponding to its true shape, because the image of an object observed by the radar is receiving an influence such as multiple-reflections and expanded in bearing because of the beam width of a radar. In addition, a radio wave does not hit the entire surface of an object. Therefore, the image of the front side of a ship facing a radar antenna corresponds to its true shape. In this paper, a method to estimate a ship's shape by means of the integration of the front parts of images obtained from radars is proposed. In addition, a matter, which is observation error of each radar, in using multi-radars, and the process included in the proposed method for solving the matter, are described. As a result of the experiment, the accuracy of about 3 degrees in ship's heading and about 14 meters in length and about 9 meters in beam was obtained.

  • PDF

Study on Infrared Signature Variations of a Naval Ship Operated at sea Near Geoje-do Island (거제도 인근해상에서 운용되는 함정의 적외선 신호 변화 특성에 대한 연구)

  • Kil, Tae-Jun;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • It is essential to understand the infrared signature of a naval ship to survive against various missile attacks under variable environmental conditions. As guided missiles are developing to equip more accurate IR seekers, research works for countermeasure and IR stealth technology are strongly required. But challenging works are continuously suggested for predicting and analyzing IR signal status of naval ships to achieve low observable performance under various weather conditions, variable missions and developing threats. In this study, overall guidelines of setting design criteria for low observable ships are proposed by considering varying environmental conditions including daily and seasonal variations. Test and evaluation criteria for newly constructed ships for target and background temperature difference is proposed as a design criteria which can be predicted by change of condition and ship's speed. Through the proposed techniques and procedures, it is expected to establish the measurement and evaluation criteria by using temperature, IR Signal differences between the ship and the background.

CFD validation and grid sensitivity studies of full scale ship self propulsion

  • Jasak, Hrvoje;Vukcevic, Vuko;Gatin, Inno;Lalovic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2019
  • A comparison between sea trial measurements and full-scale CFD results is presented for two self-propelled ships. Two ships considered in the present study are: a general cargo carrier at Froude number $F_n=0:182$ and a car carrier at $F_n=0:254$. For the general cargo carrier, the propeller rotation rate is fixed and the achieved speed and trim are compared to sea trials, while for the car carrier, the propeller rotation rate is adjusted to achieve the 80% MCR. In addition, three grids are used for each ship in order to assess the grid refinement sensitivity. All simulations are performed using the Naval Hydro pack based on foam-extend, a community driven fork of the OpenFOAM software. The results demonstrate the possibility of using high-fidelity numerical methods to directly calculate ship scale flow characteristics, including the effects of free surface, non-linearity, turbulence and the interaction between propeller, hull and the flow field.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network (그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션)

  • TaeWon, Park;Inseob, Kim;Hoon, Lee;Dong-Woo, Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.