• Title/Summary/Keyword: Surface shape modification

Search Result 121, Processing Time 0.041 seconds

Structural Dynamics Modification Using Surface Grooving Technique: Application to HDD Cover Model (그루브를 이용한 표면형상변형 동특성 변경법 : HDD 커버에 대한 적용)

  • Park, Mi-You;Park, Youngjin;Park, Youn-sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.341-345
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied. In this work, the shape of base structure was modified to improve its dynamic characteristics such as natural frequencies via surface grooving technique. Grooving shape was formed by mergingthe neighboring small embossing elements after analyzing frequency increment sensitivities of all the neighboring emboss elements. For this process, Criterion Factor was introduced and the initial grooving was started from the element having highest strain energy and the grooving is expanded into neighboring element. The range of targeting grooving area to check its frequency variations restricted to their neighboring area to reduce the computation effort. This surface grooving technique was successfully applied to a hard disk drives (HDD) cover model to raise its natural frequency by giving some groove on its surface.

Design Modification of the Stamping Die for the Improvement of Surface Quality of the Front End Module Carrier Upper Member (프런트 엔드 모듈 캐리어 어퍼 부재의 면품질 개선을 위한 금형설계 변경)

  • Kim S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.153-159
    • /
    • 2005
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the surface quality of the final product. The small inferiority induced by wrinkling near the wall of the upper member has been inspected after the draw-forming process. The finite element analysis is pursued with the whole geometry in order to consider the complicated shape. The simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification. One is to add the draw-bead near the critical region in order to increase the draw-in force. The other is to modify the tool shape such as the forming shape at the wall in order to absorb the excess metal before the final stroke. Simulation results show that the proposed guidelines both guarantee the improved surface quality.

Structural Dynamics Modification Using Surface Grooving Technique : Application to the HDD Cover model (그루브를 이용한 표면형상변형 동특성 변경법 :HDD 커버에 대한 적용)

  • Park, Mi-You;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.826-829
    • /
    • 2004
  • Structural Dynamics Modification is very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material property, changing shape of structure. In this research, using the surface grooving technique, shape of base structure was changed to improve its first natural frequency. Utilizing the result of frequency variation analysis, groove shape was formed gathering the many small embossing elements. For this process, Criterion Factor was introduced. To reduce its amount of calculation, the range of target area was restricted to their neighboring area and initial grooving point was selected using high-strain energy. This surface grooving technique was successfully applied to the HDD cover model.

  • PDF

Structural Dynamics Modification Using Surface Grooving Technique (임의의 형태를 갖는 흠을 이용한 표면형상변형을 통한 동특성 변경)

  • 박미유;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.859-863
    • /
    • 2004
  • Structural Dynamics Modification is very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material property, changing shape of structure. In this research, using the surface grooving technique, shape of base structure was changed to improve its first natural frequency. Utilizing the result of sensitivity analysis, groove shape was formed gathering the many small embossing elements. For this process, Sensitivity Criterion Factor was introduced. To reduce its amount of calculation, the range of target area was restricted to their neighboring area and that result was very successful.

  • PDF

A Practical Hull Form Optimization Method Using the Parametric Modification Function (파라메트릭 변환함수를 이용한 선형최적화의 실용화에 관한 연구)

  • Kim, Hee-Jung;Choi, Hee-Jong;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.542-550
    • /
    • 2007
  • A geometry modification is one of main keys in achieving a successful optimization. The optimized hull form generated from the geometry modification should be a realistic, faired form from the ship manufacturing point of view. This paper presents a practical hull optimization procedure using a parametric modification function. In the parametric modification function method, the initial ship geometry was easily deformed according to the variations of design parameters. For example, bulbous bow can be modified with several parameters such as bulb area, bulb length, bulb height etc. Design parameters are considered as design variables to modify hull form, which can reduce the number of design variables in optimization process and hence reduce its time cost. To verify the use of the parametric modification function, optimization for KCS was performed at its design speed (FN=0.26) and the wave making resistance is calculated using a well proven potential code with fully nonlinear free surface conditions. The design variables used are key design parameters such as Cp curve, section shape and bulb shape. This study shows that the hull form optimized by the parametric modification function brings 7.6% reduction in wave making resistance. In addition, for verification and comparison purpose, a direct geometry variation method using a bell-shape modification function is used. It is shown that the optimal hull form generated by the bell-shaped modification function is very similar to that produced by the parametric modification function. However, the total running time of the parametric optimization is six times shorter than that of the bell shape modification method, showing the effectiveness and practicalness from a designer point of view in ship yards.

Structural Dynamics Modification Using Surface Grooving Technique : The Effectiveness of Check board Pattern and Comparison the Algorithm for Initial Starting Point (그루브를 이용한 표면형상변형 동특성 변경법 : 체크무늬 그루브의 효용성과 초기 시작점의 선택 알고리즘에 대한 비교)

  • Park, Mi-You;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.128-131
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures. changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. To check the effectiveness of this surface grooving technique, the grooved HDD cover design was manufactured using rapid prototyping and experimentally tested to prove the effectiveness of the grooving method as one of SDM techniques. And the modal strain energy and eigenvalue sensitivity method for choosing the initial starting point are compared.

  • PDF

Structural Dynamics Modification Using Surface Grooving Technique : Modified Algorithm and Result of Fine HDD Cover Model (개선된 알고리즘을 이용한 그루브를 통한 표면형상변형 동특성 변경법)

  • Park, Mi-You;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.834-837
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. At first, to check the effect of mesh size, surface grooving technique was tested to the fine HDD cover FEmodel. And fur the more efficient method, the algorithm is modified. Removing the low-valued modal strain energy element among the target domain, computational effort can be greatly reduced and the result of simulation is similar with the other simulation result.

  • PDF

Verification of Structural Dynamics Modification Using Surface Grooving Technique : Using Optimization with Fully Embossed HDD cover model (극한값으로부터의 최적화를 이용한 그루브를 통한 표면형상변형 동특성 변경법 검증)

  • Park, Mi-You;Sung, Rock-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. To verify Surface Grooving Technique, fully embossed HDD cover model was optimized. And comparing with previous optimization result, the effectiveness of this surface grooving technique was checked. The shape of groove and 1 st natural frequency were converged to the same result of previous optimization.

Study on YBCO Surface Modification by Laser Beam (레이저 빔에 의한 YBCO 표면변조 연구)

  • 정영식;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.129-132
    • /
    • 1996
  • Surface modification like cone formation on Pulsed laser deposition (PLD) occurs in YBCO target surface irradiated by laser beam. Cone formation results in a reduction of deposition rate, so that it is significant obstacles to an efficient deposition process. With the change of various conditions such as the number of laser shot, target density, direction of incoming laser beam, we have systematically analyzed the modification of target surface. Because cones formed by beam-target interactions grow in direction of incoming laser beam, we have used the method of rotating the target position by 180$^{\circ}$ with the same number and position of laser shot. Experimental results of losing the directionality and changing the shape of cones formed on laser irradiated YBCO target surface is obtained by the SEM image. Also, we have observed that the size of cones formed on target by pulsed laser became larger with increasing the number of laser shots.

  • PDF

Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process (졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질)

  • Choi, Pil-Gyu;Chu, Min Cheol;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.