• Title/Summary/Keyword: Surface profile

Search Result 1,861, Processing Time 0.028 seconds

A Study on the Waviness Compensation System of Ultraprecision Machining (초정밀가공의 파상도 보정시스템에 관한 연구)

  • Kim, Jeoung-Du
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.132-140
    • /
    • 1998
  • Recently, precision machining technology has been developed continuously in order to make high productivity and quality assurance of the precision parts of several industrial fields. Waviness may occur on the surface of the machined parts due to the table motion error and the dynamic cutting mechanism between the tool and the workpiece. The waviness may fall off the form accuracy of the precision machine parts. In the research, a micro cutting device with piezoelectric actuator has been developed to control precise depth of cut and compensate the waviness on the surface of the workpiece. Experiments have been carried out in the precision lathe. The characteristics of the surface profile and cause of the waviness profile have been analyzed and waviness profiles of some cause have been compared with those of experiments.

  • PDF

Surface Subsidence according to Progressive Collapse of Circular opening (원형공동의 점진적인 붕락에 따른 지표침하특성)

  • 지정배;김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • In order to investigate the effect of progressive collapse of underground circular opening on surface subsidence, laboratory model tests were performed. The modelling materials were sand which has been used as KS standard. Six test models which had respectively different depths of openings were produced. Surface subsidence and horizontal displacements were measured according to progressive collapse of underground opening. Some subsidence prediction method such as NCB method, profile function method and influence function method were considered to predict the subsidence of sand models. The profile function method approximated by Gaussian error function was finally suggested as the most appropriate to sand models.

  • PDF

Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method (증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구)

  • Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

State Monitoring of Micro-Grooving using AE Signal (AE신호를 이용한 micro-grooving의 상태감시)

  • 이희석;손성민;김성렬;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.332-335
    • /
    • 1997
  • With the advance of precision technique, the optical system is more precise and complex and the machining method of optical element which is composed of micro-grooves is developed. Especially, the method of micro-grooving using diamond tool is used widely owing to many merit, but has problems of damage of surface roughness due to tool wear and tool fracture. This paper deals with state monitoring using AE RMS in the micro-grooving. The change of AE RMS is very small with increment of cutting velocity and depth of cut. In spite of constance magnitude of principal force in machining using diamond tool of tool wear and tool fracture, AE RMS is highly fluctuated. Because changing of cutting state has relevance to surface roughness profile, surface toughness profile is expected using AE RMS.

  • PDF

Effects of Material Anisotropy on Ultrasonic Beam Propagation: Diffraction and Beam Skew

  • Jeong, Hyun-Jo;Schmerr, W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.198-205
    • /
    • 2006
  • The necessity of nondestructively inspecting austenitic steels, fiber-reinforced composites, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface playa key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasilongitudinal(qL) beam propagates in the symmetry plane of transversely isotropic austenitic steels. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions.

Surface wave scattering by finite periodic gratings of an arbitrary profile in a grounded plane (접지된 유전체 슬랩 도파로에서 주기적인 임의 형태의 격자에 의한 표면파 산란)

  • Lee, Cheol-Hun;Jo, Ung-Hui;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.11
    • /
    • pp.1-7
    • /
    • 2000
  • Surface wave scattering by periodic grooves of arbitrary profile in a grounded dielectric slab is investigated for the TE surface wave incidence. Both the finite and infinite periodic geometries are considered. The former case is analyzed by using of hybrid FEM/MOM and the latter by using of full MOM procedure. Some numerical results for the reflected and transmitted powers in a grounded dielectric slab, radiation power into the free space, and radiation patterns in case of finite structure and for the dispersion diagram in case of infinite structure are presented. And some descriptions on the relationship between the finite and infinite structure such as the maximum beam angle are given.

  • PDF

Numerical Analysis of Violent Sloshing Problems by CCUP Method (CCUP 기법을 이용한 2 차원 슬로싱 문제의 수치해석)

  • Yang, Kyung-Kyu;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In the present paper, a numerical method based on the constraint interpolation profile (CIP) method is applied for simulating two-dimensional violent sloshing problems. The free surface boundary value problem is considered as a multiphase problem which includes water and air. A stationary Cartesian grid system is adopted, and an interface capturing method is used to trace the shape of free surface profile. The CIP combined unified procedure (CCUP) scheme is applied for flow solver, and the tangent of hyperbola for interface capturing (THINC) scheme is used for interface capturing. Numerical simulations have been carried out for partially-filled 2D tanks under forced sway and roll motions at various filling depths and frequencies. The computational results are compared with experiments and/or the other numerical results to validate the present numerical method.

A Similarity of the Velocity Profiles According to Water Depth in Partially Filled Circular Pipe Flows (비만관 상태의 원형관로에서 수위에 따른 속도분포의 상사성)

  • Yoon, Ji-In;Kim, Young-Bae;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.28-32
    • /
    • 2008
  • Contrary to the flow rate in fully filled pipe flows, the flow rate in partially filled pipe flows is significantly influenced by the variation of water level, channel slop, and so on. The major difference in these two flows results from the existence of a free surface. To make it clear, in the present study, a similarity of the velocity profile in a partially filled circular pipe has been investigated according to the water level. A particle image velocimetry (PIV) technique was applied to measure the three-dimensional velocity profiles. As a result, there is found a similarity of the velocity profile near the central region. However, near the side wall, the similarity is broken due to the interaction between the wall and the free surface.

Numerical Study on Characteristics of Ship Wave According to Shape of Waterway Section

  • Hong Chun-Beom;Lee Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2263-2269
    • /
    • 2005
  • The ship wave phenomena in the restricted waterway were investigated by a numerical analysis. The Euler and continuity equations were employed for the present study. The boundary fitted and moving grid system was adopted to enhance the computational efficiency. The convective terms in the governing equations and the kinematic free surface boundary condition were solved by the Constrained Interpolated Profile (CIP) algorithm in order to solve accurately wave heights in far field as well as near field. The advantage of the CIP method was verified by the comparison of the computed results by the CIP and the Maker and Cell (MAC) method. The free surface flow simulation around Wigley hull was performed and compared with the experiment for the sake of the validation of the numerical method. The present numerical scheme was applied to the free surface simulation for various canal sections in order to understand the effect of the sectional shape of waterways on the ship waves. The wave heights on the side wall and the shape of the wave patterns with their characteristics of flow are discussed.

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Ayed, Hamdi;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2021
  • Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.