• 제목/요약/키워드: Surface process

검색결과 12,951건 처리시간 0.046초

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

해수 중 펄스 전착 프로세스 의해 제작한 석회질 피막의 결정구조 제어 및 특성 평가 (Crystal Structure Control of Calcareous Deposit Films Formed by Pulse Electrodeposition Process in Seawater and Their Properties)

  • 박준무;이승효
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.103-110
    • /
    • 2019
  • As an anti-corrosion method in seawater, cathodic protection is widely recognized as the most effective and technically appropriate corrosion prevention methodology for marine structures against harsh corrosive environment. When applying the cathodic protection in seawater, the surface of the metal facilities the formation of compounds of $CaCO_3$ and $Mg(OH)_2$. These mixed compounds are generally called 'calcareous deposits'. This layer functions as a barrier against the corrosive environment and functions to further inhibit the corrosion process and then leading to a decrease in current demand for cathodic protection. However, calcareous deposit films are partially formed on the surface of the cathode and there are some difficulties to maintain both a corrosion resistance for a long period of time and a strong adhesion between deposits and base metal. In this study, the pulse electrodeposition process was applied to improve adhesion and corrosion resistance of the calcareous deposit films, and to solve the problem of hydrogen embrittlement at high current density. The uniform and compact calcareous deposit films were prepared by pulse electrodeposition process, and their properties were characterized using various surface analytical techniques together with electrochemical methods.

반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화 (Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

플라즈마 전자빔을 이용한 분말공급형 직접식 에너지 적층 공정으로 제작된 Stellite21 적층층의 표면 특성 개선에 관한 기초 연구 (Preliminary Study on Improvement of Surface Characteristics of Stellite21 Deposited Layer by Powder Feeding Type of Direct Energy Deposition Process Using Plasma Electron Beam)

  • 김동인;이호진;안동규;김진석;강은구
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.951-959
    • /
    • 2016
  • The aim of this paper is to investigate the improvement of surface characteristics of Stellite21 deposited layer by powder feeding type of direct energy deposition (DED) process using a plasma electron beam. Re-melting experiments of the deposited specimen is performed using a three-dimensional finishing system with a plasma electron beam. The acceleration voltage and the travel speed of the electron beam are chosen as process parameters. The effects of the process parameters on the surface roughness and the hardness of the re-melted region are examined. The formation of the re-melted region is observed using an optical microscope. Results of these experiments revealed that the re-melting process using a plasma electron beam can greatly improve the surface qualities of the Stellite21 deposited layer by the DED process.

세정공정에 따른 Y2O3 코팅부품의 내플라즈마성 영향 (Influence of Plasma Corrosion Resistance of Y2O3 Coated Parts by Cleaning Process)

  • 김민중;신재수;윤주영
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.365-370
    • /
    • 2021
  • In this research, we proceeded with research on plasma resistance of the cleaning process of APS(Atmospheric Plasma Spray)-Y2O3 coated parts used for semiconductor and display plasma process equipment. CF4, O2, and Ar mixed gas were used for the plasma environment, and respective alconox, surfactant, and piranha solution was used for the cleaning process. After APS-Y2O3 was exposed to CF4 plasma, the surface changed from Y2O3 to YF3 and a large amount of carbon was deposited. For this reason, the plasma corrosion resistance was lowered and contamination particles were generated. We performed a cleaning process to remove the defect-inducing surface YF3 layer and carbon layer. Among three cleaning solutions, the piranha cleaning process had the highest detergency and the alconox cleaning process had the lowest detergency. Such results could be confirmed through the etching amount, morphology, composition, and accumulated contamination particle analysis results. Piranha cleaning process showed the highest detergency, but due to the very large thickness reduction, the base metal was exposed and a large number of contaminated particles were generated. In contrast, the surfactant cleaning process exhibit excellent properties in terms of surface detergency, etching amount, and accumulated contamination particle analysis.

Plasma Aided Process As Alternative to Hard Chromium Electroplating

  • Kwon, Sik-Chol;Lee, K.H.;Kim, J.K.;Kim, M.;Lee, G.H.;Nam, K.S.;Kim, D.;Chang, D.Y.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.48-58
    • /
    • 2003
  • This paper will present an overview of toxicity of hexavalent chromium as well as effort for its replacement by a wide spectrum of alternative materials and technologies. Cr-based materials such as trivalent electrodeposit will be one of strong candidates for hard chromium by surface modification of its surface hardness. Ni-base alloy deposits has proved its application in specific mold for glass. HVOF has been studied in aircraft and military sector. There are still under way of development for commercially available alternatives. To date, no single coating has been identified as universal process as comparable to conventional hard chromium electroplating.

열플라즈마를 이용한 재료의 표면개질 (Surface modification of materials by thermal plasma)

  • 강성표;이한준;김태희
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.308-318
    • /
    • 2022
  • The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.

CO2 레이저 빔 조사에 의한 프레스 금형재료의 표면경화 특성 (Characteristics of Surface Hardened Press Die Materials by CO2 Laser Beam Irradiation)

  • 양세영;최성대;최명수;전재목
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.31-37
    • /
    • 2011
  • Recently, the technology of surface treatment is being more important which affects the material cost reduction and substitution to the expensive material. The material used for the mechanical processing should have not only high intensity, but also strength toughness, wear resistance and corrosion resistance. In order to increase the durability and have better quality of the parts using such kind of tooling material, various kinds of research of the surface hardening through many kinds of heat resources is being done and practically applied. In this study, the characteristics of hardening surface zone for high strength of the press die material through laser beam irradiation are researched. In this study, it is experimentally observed by the status of the surface morphology, tensile strength, the hardness distribution of the base metal and wear condition by the surface hardness pattern by the laser beam based on the process parameters of $CO_2$ laser by using SM45C and STD11 used for press tool. Through this research, the characteristics of surface hardened zone for high strength of the thin metal by laser beam irradiation is done.

Inscribed Approximation based Adaptive Tessellation of Catmull-Clark Subdivision Surfaces

  • Lai, Shuhua;Cheng, Fuhua(Frank)
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.139-148
    • /
    • 2006
  • Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex surfaces. But the number of faces in the uniformly refined meshes increases exponentially with respect to subdivision depth. Adaptive tessellation reduces the number of faces needed to yield a smooth approximation to the limit surface and, consequently, makes the rendering process more efficient. In this paper, we present a new adaptive tessellation method for general Catmull-Clark subdivision surfaces. Different from previous control mesh refinement based approaches, which generate approximate meshes that usually do not interpolate the limit surface, the new method is based on direct evaluation of the limit surface to generate an inscribed polyhedron of the limit surface. With explicit evaluation of general Catmull-Clark subdivision surfaces becoming available, the new adaptive tessellation method can precisely measure error for every point of the limit surface. Hence, it has complete control of the accuracy of the tessellation result. Cracks are avoided by using a recursive color marking process to ensure that adjacent patches or subpatches use the same limit surface points in the construction of the shared boundary. The new method performs limit surface evaluation only at points that are needed for the final rendering process. Therefore it is very fast and memory efficient. The new method is presented for the general Catmull-Clark subdivision scheme. But it can be used for any subdivision scheme that has an explicit evaluation method for its limit surface.

전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계 (Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding)

  • 차명섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF