• Title/Summary/Keyword: Surface pollutant

Search Result 377, Processing Time 0.033 seconds

Mixing Characteristics of Nonconservative Pollutants in Paldang Lake (팔당호에 유입된 비보존성 오염물질의 혼합거동)

  • Seo, Il Won;Choi, Nam Jeong;Jun, In Ok;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.221-230
    • /
    • 2009
  • In Korea, many water intake plants are easily affected by effluents of sewage treatment plants because sewage treatment plants are usually located upstream or nearby the plants of the same riverine area. Furthermore, the inflow of harmful contaminants owing to pollutant spills or transportation accidents of vehicles using the roads and bridges intersecting the river causes significant impact on the management of water intake plants. Paldang lake, the main water intake plants in Korea, is especially exposed to various water pollution accidents, because the drainage basin area is significantly large compared to the water surface area of the lake. Therefore it is necessary to predict the possible pollutant spill in advance and consider measurements in case of water pollution. In this study, water quality prediction was performed in Paldang Lake in Korea durig the dry season using two-dimensional numerical models. In order to represent the cases of pollutant accidents, the difference of pollutant transport patterns with varying injection points was analyzed. Numerical simulations for hydrodynamics of water flow and water quality predictions were performed using RMA-2 and RAM4 respectively. As a result of simulation, the difference of pollutant transport with the injection points was analyzed. As a countermeasure against the pollutant accident, the augmentation of the flow rate is proposed. In comparison with the present state, the rapid dilution and flushing effects on the pollutant cloud could be expected with increase of flow rate. Thus, increase of flow rate can be used for operation of water intake plants in case of pollutant spill accidents.

Pollutant Removal Efficiency of Sedimentation Basin at Inlet of an Irrigation Reservoir (저수지 내 유입부 침강지의 수질정화 효율)

  • Jang, Jeong-Ryeol;Choi, Sun-Hwa;Kwun, Soon-Kuk
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.473-479
    • /
    • 2004
  • A sedimentation basin (SB) at the inlet of an irrigation reservoir which was constructed using an auxiliary dam was monitored to evaluate its pollutant removal efficiency. Water sampling at three points, i.e., inflow stream, upstream and downstream of the reservoir, were taken 5 times before and after the construction of the SB in 1999 and 2003, respectively. No significant water quality variations in inflow stream were observed during these periods. The COD, T-N, T-P and SS removal efficiencies were 38, 24, 35 and 49%, respectively. The results indicated that those removal efficiencies significantly increased during the rainy season and COD removal efficiency, especially, was higher than others studies. The scale of SB in this study was rational as aspects of pollutant removal efficiency and hydraulic detention time. And it is recommended that SB, at inlet of an reservoir, should be constructed as completely separated structure from reservoir water body and having SAR Index from 0.7% to 1.0%.

Simulation of Field Soil Loss by Artificial Rainfall Simulator - By Varing Rainfall Intensity, Surface Condition and Slope - (인공강우기에 의한 시험포장 토양유실량 모의 - 강우강도, 지표면 및 경사조건 변화 -)

  • Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Seo, Jiyeon;Lee, Jaewoon;Lim, KyoungJae;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.785-791
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as the most cause of muddy water problem among Non-point source (NPS) pollutant, was studied by the analysis of direct runoff, groundwater discharge, and soil water storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared soil as slope increases from 5% to 20%. The direct runoff volume from straw covered surface were much lower than bared surface. The infiltration capacity of straw covered surface increased, because the surface sealing by fine material of soil surface didn't occur due to the straw covering. Under the same rainfall intensity and slope condition, 2.4~8.2 times of sediment yield were occurred from bared surface more than straw covered surface. The volume of infiltration increased due to straw cover and the direct runoff flow decreased with decrease of tractive force in surface. To understand the relationship of the rate of direct runoff, groundwater discharge, and soil water storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, except between the rate of groundwater storage and rainfall intensity.

Evaluation of Heavy Metal Pollution in the Dumping Site of the Dredged Sediment, Masan Bay (마산만 오염퇴적물 준설토 투기해역의 중금속 오염평가)

  • Kwon Young-Tack
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.75-81
    • /
    • 2004
  • A large amount 2.1×106 ㎥ of the polluted sediment was dredged from the Masan Bay and deposited in Gapo confined area, Masan. The dissolved metal concentrations of seawater in the dumping site (Gapo area) were observed during one tidal cycle and compared with those of seawater obtained from Jinhae Bay. The sediment was evaluated as from Non polluted to Moderately polluted by USEPA standards. It was judged that toxicological effects of sediment analyzed ranged from ERL to ERM with copper and zinc, and ERL with cadmium, chrome, lead, and nickel by the Adverse Biological Effects. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The benthic organisms in Gapo area had higher concentrations of trace metals (Oyster: Zn 238.96, Cu 5.29 ㎍/g wet wt., Clam: Zn 17.71, Cu 1.00 ㎍/g wet wt., Mussel. Zn 187.98, Pb 0.28, Cr 0.15, Mn 4.23, Sr 1.45 and Fe 100.33 ㎍/g wet wt.) compared to outside of dumping site. However, the trace metal level in the bivalves was less than the NFPQIS (National Fisheries Products Quality Inspection Service) standard.

  • PDF

Underappreciated Resource Phosphorus : Implications in Agronomy

  • Kim, Hye-Jin;Ryu, Jin-Hee;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • Phosphorus (P) which is required by all living plants and animals is an important input for economic crop and livestock production systems. Phosphorus containing compounds are essential for photosynthesis in plants, for energy transformations and for the activity of some hormones in both plants and animals. Loss of soil P to water can occur in particulate forms of P with eroded surface soil and in soluble forms in runoff, soil interflow, and deep leaching. The excessive losses of P from agricultural systems can degrade water quality of surface waters, resulting in accelerating eutrophication. Thus, P is often the limiting element and its control is of prime importance in reducing the accelerated eutrophication of surface waters. However, reserves of phosphate begin to run out, the impacts are likely be immense in terms of rising food prices, growing food insecurity. This paper reviews underappreciated resource as a key component of fertilizers and one of controversial pollutant in terms agronomy and environment.

Mixing Analysis of Floating Pollutant Using Lagrangian Particle Tracking Model (Lagrangian 입자추적모형을 이용한 부유성 오염물질의 혼합해석)

  • Seo, Il Won;Park, Inhwan;Kim, Young Do;Han, Eun Jin;Choo, Min Ho;Mun, Hyun Saing
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.383-392
    • /
    • 2013
  • In this research, mixing behavior of the floating pollutant such as oil spill accidents was analyzed by studying the advection-diffusion of GPS floaters at water surface. The LPT (Lagrangian Particle Tracking) model of EFDC (Environmental Fluid Dynamics Computer Code) was used to simulate the motion of the GPS floater tracer. In the field experiment, 35 GPS floaters were injected at the Samun Bridge of Nakdong River. GPS floaters traveled to downstream about 700 m for 90 minutes. The field data by the GPS floater experiments were compared with the simulation in order to calibrate the parameter of LPT model. The turbulent diffusion coefficient of LPT model was determined as $K_H/hu^*$ = 0.17 from the scatter diagram. The arrival time of peak concentration and transverse diffusion from the simulation results were similar with the experiments from the concentration curves. Numerical experiments for anticipation of damage from floating pollutant were conducted in the same reach of the Nakdong River and the results show that the pollutant cloud transported to the left bank where the Hwawon pumping station is located. For this reason, it is suggested that the proper action should be needed to maintain the safety of the water withdrawal at the Hwawon pumping station.

Characteristics of the Black Surface Layer on Carbonate Stone Pagoda in Urban Area and Its Origin (도심지역에 위치한 탄산염암 석탑 표면에 형성된 흑색층의 특성과 그 기원)

  • Do, Jin-Young;Kim, Jeong-Jin;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.383-392
    • /
    • 2006
  • Calcium carbonate stone deterioration has been intensified in urban area, mainly due to the action of atmospheric pollutant. Samples from the black surface layer were examined under petrographic and scanning electron microscope, coupled with energy dispersive X-ray analyser X-ray fluorescence and X-ray diffraction analysis was also carried out for chemical composition and mineral phase analysis, respectively. Moreover, sulphur isotope ratio was measured, in order to identify the origin of sulphate compounds in the black surface layer. Optical and electronic petrographic analysis indicated that gypsum and Quartz were contained in the black surface layer and led to microcracks. Microstructure and chemical composition analysis showed that the interface between black layer and original stone is not black but its characteristic is similar to black layer The results indicated that during deterioration process the black layer can be expanded gradually into the interface by adsorption of atmospheric pollutants. The sulphur isotope analysis demonstrates that there are different origins of the sulphur component in black surface layer.

Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation (식생이 조성된 LID 시설의 효율 평가)

  • Hong, Jung Sun;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • Low impact development (LID) facilities are established for the purpose of restoring the natural hydrologic cycle as well as the removal of pollutants from stormwater runoff. Improved efficiency of LID facilities can be obtained through the optimized interaction of their major components (i.e., plant, soil, filter media, microorganisms, etc.). Therefore, this study was performed to evaluate the performances of LID facilities in terms of runoff and pollutant reduction and also to provide an optimal maintenance method. The monitoring was conducted on four LID technologies (e.g., bioretention, small wetlands, rain garden and tree box filter). The optimal SA/CA (facility surface area / catchment area) ratio for runoff reduction greater than 40% is determined to be 1 - 5%. Since runoff reduction affects the pollutant removal efficiency in LID facilities, SA/CA ratio is derived as an important factor in designing LID facilities. The LID facilities that are found to be effective in reducing stormwater runoff are in the following order: rain garden > tree box filter > bioretention> small wetland. Meanwhile, in terms of removal of particulate matter (TSS), the effectiveness of the facilities are in the following order: rain garden > tree box filter > small wetland > bioretention; rain gardens > tree box filter > bioretention > small wetland were determined for the removal of organic matter (COD, TOC), nutrients (TN, TP) and heavy metals (Cu, Pb, Cd, Zn). These results can be used as an important material for the design of LID facilities in runoff volume and pollutant reduction.

ESTIMATION OF LONG-TERM POLLUTANT REMOVAL EFFICIENCIES OF WET RETENTION/DETENTION BASINS USING THE WEANES MODEL

  • Youn, Chi-Hyueon;Pandit, Ashok;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.215-219
    • /
    • 2005
  • A macro spreadsheet model, WEANES (Wet Pond Annual Efficiency Simulation Model), has been developed to predict the long-term or annual removal efficiencies of wet retention/detention basins. The model uses historical, site-specific, multi-year, rainfall data, usually available from a nearby National Oceanic and Atmospheric Administration (NOAA) climatological station to estimate basin efficiencies which are calculated based on annual mass loads. Other required input parameters are: 1) watershed parameters; drainage area, pervious curve number, directly connected impervious area, and ti me of concentration, 2) pond parameters; control and overflow elevations, pond side slopes, surface areas at control elevation and pond bottom; 3) outlet structure parameters; 4) pollutant event mean concentrations; and 5) pond loss rate which is defined as the net loss due to evaporation, infiltration and water reuse. The model offers default options for parameters such as pollutant event mean concentrations and pond loss rate. The model can serve as a design, planning, and permitting tool for consulting engineers, planners and government regulators.

  • PDF

Effects of Plant on Pollutant Removal Rate n Surface-flow Constructed Wetlands (자유수면형 인공습지에서 식물식재 유무가 처리효율에 미치는 영향)

  • Ham, Jong-Hwa;Kim, Hyung-Joong;Kim, Dong-Hwan;Hong, Dae-Byuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • Three different types of wetlands (unplanted wetland, reed planted wetland, cattail planted wetland) were constructed at the mouth of Seokmoon reservoir with 910 $m^2$ each to examine the effects of wetland plant on pollutant removal rate in constructed wetland, and operated for 9 years (2002~2010). Water depth of the wetland was maintained at 0.3~0.5 m, flow rate was about 40~200 $m^3$/day, and retention time was managed at about 1~5 days. There was no difference in removal rate of SS, TN, and TP between reed wetland and cattail wetland. Removal rate of SS and TN in planted wetland with reed and cattail were higher than unplanted wetland, whereas removal rate of TP in unplanted wetland was higher then planted wetland. The monthly variation of removal rate in planted wetlands was high compared with unplanted wetland. From the long term monitoring results, SS and TN removal rates of period3 (2008~2010) were higher than period1 (2002~2004) in planted wetland, whereas TP removal rate was decreased as time goes on. Overall, pollutant removal rate in constructed wetland was more influenced by existence of plants than by plant species. Although constructed wetland is operated long term period, SS, TN, and TP removal rate (SS 90 %, TN 60 %, TP 40 %) can be maintained high values.