• Title/Summary/Keyword: Surface plasmons

Search Result 41, Processing Time 0.023 seconds

Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing

  • Byun, Kyung-Min
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2010
  • Plasmonic-based biosensing technologies have been successfully commercialized and applied for monitoring various biomolecular interactions occurring at a sensor surface. In particular, the recent advances in nanofabrication methods and nanoparticle syntheses provide a new route to overcome the limitations of a conventional surface plasmon resonance biosensor, such as detection limit, sensitivity, selectivity, and throughput. In this paper, optical and physical properties of plasmonic nanostructures and their contributions to a realization of enhanced optical detection platforms are reviewed. Following vast surveys of the exploitation of metallic nanostructures supporting localized field enhancement, we will propose an outlook for future directions associated with a development of new types of plasmonic sensing substrates

Determination of Optical Constants and Observation of Patterns of Dielectric Thin Films Using Surface Plasmon Resonance (표면 플라즈몬 공명을 이용한 유전체 박막의 광학 상수 결정과 형상 측정)

  • 황보창권;김성화;이규진
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.205-216
    • /
    • 1992
  • Distribution of electric fields of surface plasmons at resonance and off-resonance angles were calculated and compared. As applications of surface plasmon resonance, (1) optical constants of ZnS films overcoated on Ag films were measured as the thickness of ZnS films increased, (2) four surface plasmon resonances distributed spatially due to the different thickness of SiO thin films overcoated on Ag films were observed in a picture frame by employing diverging waves of incidence, and (3) patterns of SiO thin films such as a grating and a character "가" overcoated on Ag films were measured by employing collimated waves of incidence.

  • PDF

Enhanced evanescent field force on Mie particles by coupling with surface plasmons (표면 플라즈몬과 결합된 에바네슨트파가 Mie입자에 미치는 광압 분석)

  • Song, Young-Gon;han, Bong-Myung;Chang, Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.437-445
    • /
    • 2001
  • We examine theoretically the properties of the force on Mie particles induced by evanescent fields at a system of multilayer films (including a metal film), at which the surface plasmon resonance is excited by a p-polarized plane electromagnetic wave. An expression of the surface plasmon-coupled evanescent fields produced in Kretschmann (or Sarid) geometry is expanded in terms of vector spherical wave functions, while multiple reflections between the Mie particle and the metal boundary are taken into account. The Cartesian components of the force on Mie particles by the evanescent fields are analytically formulated and numerically evaluated. The force components are increased by one or two orders of magnitude at metal boundaries over those at dielectric boundaries. As a result, we can confirm the possibility of stable manipulation or rotation of a finite-sized object by forces of surface plasmon-coupled evanescent fields.

  • PDF

Surface-Plasmon Assisted Transmission Through an Ultrasmall Nanohole of ~ 10 nm with a Bull's Eye Groove

  • Kim, Geon Woo;Ko, Jae-Hyeon;Park, Doo Jae;Choi, Seong Soo;Kim, Hyuntae;Choi, Soo Bong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1698-1702
    • /
    • 2018
  • We simulate the light transmission through an extremely small nanoscale aperture having a 10 nm diameter punctured in a metal film positioned at the center of a plasmonic bull's eye grating. A considerable directive emission of transmitted light with a divergence angle of 5.7 degrees was observed at $10{\mu}m$ from the nanohole opening at the frequency of surface plasmon polariton excitation, an confirmed by measuring the distance dependent transmission amplitude. Observations of the electric field in cross-sectional, near-field, and far-field views near-field enhancement associated with the surface plasmon excitation, and the interference of the electric field light through the nanohole in the near-field region is responsible for such a considerable directive emission.

Strongly Enhanced Electric Field Outside a Pit from Combined Nanostructure of Inverted Pyramidal Pits and Nanoparticles

  • Meng Wang;Wudeng Wang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.562-568
    • /
    • 2023
  • We designed a combined nanostructure of inverted pyramidal pits and nanoparticles, which can obtain much stronger field enhancement than traditional periodic pits or nanoparticles. The field enhancement |E|/|E0| is greater than 10 in a large area at 750-820 nm in incident wavelength. |Emax|/|E0| is greater than 60. Moreover, the hot spot is obtained outside the pits instead of localized inside them, which is beneficial for experiments such as surface-enhanced Raman scattering. The relations between resonant wavelength and structural parameters are investigated. The resonant wavelength shows a linear dependence on the structure's period, which provides a direct way to tune the resonant wavelength. The excitation of a propagating surface plasmon on the periodic structure's surface, a localized surface plasmon of nanoparticles, and a standing-wave effect contribute to the enhancement.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

Surface Plasmon Enhanced Photoluminescence of Rhodamine B Confined in SBA15

  • Dinakaran, K.;Chandramohan, A.;Venkatesan, M.R.;Devaraj, S.;Devi, V.;Alagar, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3861-3864
    • /
    • 2011
  • Rhodamine B dye (RB) has been introduced into the mesoporous silica (SBA15) and Ag anchored mesoporous silica by applying solution impregnation method. Surface treatment of SBA15 with 3-aminopropyltrimethoxysilane (APTMS) facilitates selective anchoring of the RB molecules on SBA15. The photoluminescence spectra of RB confined within SBA15 indicates higher emission intensity, than that of the RB solid, particularly in the presence of Ag nanoparticles. The significant enhancement in photoluminescence intensity is attributed to the local enhancement of the optical fields near the molecules by interactions with silver plasmons.

Nano-Optical Investigation of Enhanced Field at Gold Nanosphere-Gold Plane Junctions

  • Ahn, Sung-Hyun;Park, Won-Hwa;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2200-2202
    • /
    • 2007
  • The local field distribution around gold nanosphere-gold plane junction has been studied using the finitedifference time-domain (FDTD) electrodynamics calculation procedure. We find that both the in-plane and out-of-plane polarized excitation produce enhanced field strong enough to explain the observed SERS activities of the junctions. Comparison with a simple dipole-image dipole model shows that the enhanced field primarily originates from the multipole-image multipole interaction, which indicates that the detailed fine-structures of the nanoparticles also play a significant role in the SERS activities as well.

Numerical Study of Polarization-Dependent Emission Properties of Localized-Surface-Plasmon-Coupled Light Emitting Diodes with Ag/SiO2 Na

  • Moon, Seul-Ki;Yang, Jin-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.582-588
    • /
    • 2014
  • We study polarization-dependent spontaneous emission (SE) rate and light extraction efficiency (LEE) in localized-surface-plasmon (LSP)-coupled light emitting diodes (LEDs). The closely packed seven $Ag/SiO_2$ core-shell (CS) nanoparticles (NPs) lie on top of the GaN surface for LSP coupling with a radiated dipole. According to the dipole direction, both the SE rate and the LEE are significantly modified by the LSP effect at the $Ag/SiO_2$ CS NPs when the size of Ag, the thickness of $SiO_2$, and the position of the dipole source are varied. The enhancement of the SE rate is related to an induced dipole effect at the Ag, and the high LEE is caused by light scattering with an LSP mode at $Ag/SiO_2$ CS NPs. We suggest the optimum position of the quantum well (QW) in blue InGaN/GaN LEDs with $Ag/SiO_2$ CS NPs for practical application.

Collective Excitations in Thin K Films on Al(111)

  • Kim, Bong-Ok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.137-137
    • /
    • 2000
  • The surface collective modes of thin K films deposited on Al(111) have been investigated using frequency dependent photoyield measurements and momentum resolved inelastic electron scattering. Jellium based theoretical calculations have predicted a richer set of features in the thin films than for the surface of a semi-infinite solid because there are th interference between two interfaces (substrate-film and film-vacuum) and heavy damping on the substrate. The use of an optical probe and electron scattering has allowed us to draw a more complete picture of the dynamic screening in thin films. The number, dispersion, damping and optical activity of the collective modes of the thin films have been measured as a function of K film thickness. New overlayer-induced excitations are observed : At qII=0, they correspond to the antisymmetric slab mode and the multipole surface plasmon. At finite qII=0, these modes undergo a transition towards the K multipole and monopole surface plasmons. With increasing coverage, the overlayer excitations turn into the collective modes of semi-infinite K. For a consistent interpretation of photoyield and electron energy loss spectra it is crucial to account for the non-analytic dispersion of the overlayer modes at small parallel wave vectors and for the finite angular resolution of the detector. The observed dispersions confirm predictions based on the time-dependent density functional approach.

  • PDF