• Title/Summary/Keyword: Surface nucleation

Search Result 334, Processing Time 0.028 seconds

A study on the improvement of crystallinity and surface roughness of polycrystalline diamond films deposited by MPCVD method (MPCVD 방법에 의해 증착된 다결정 다이아몬드 박막의 결정성 및 표면 거칠기 향상에 관한 연구)

  • Shin, Wan-Chul;Seo, Soo-Hyung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1349-1351
    • /
    • 2001
  • Polycrystalline diamond films are deposited by using a microwave plama CVC system, where the bias-enhanced nucleation (BEN) method is employed. Effects of the varying microwave power, the surface treatment by hydrogen plasma, and the cyclic hydrogen etching during deposition on the crystallinity as well as on the surface roughness of deposited films are examined by Raman spectroscopy, SEM, and AFM. A novel method for achieving a smoother diamond surface is also suggested through the indirect wafer bonding and back-side polishing.

  • PDF

Minispangling of a Hot Dip Galvanized Sheet Steel by a Solution Spray Method (수용액 분사법에 의한 용융아연 도금강판의 미니스팡글 형성)

  • 김종상;전선호;박정렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The formation of spangles on a hot dip galvanized sheet steel by spray cooling the molten zinc coating with air, water and 2.0wt% $NH_4H_2PO_4$ solution has been studied performing laboratory experiments, and their coating properties have been evaluated. Minimized spangles were easily formed by mist spraying the solution for 1 second at the low nozzle spray pressure onto the molten zinc at 420~$422^{\circ}C$ because the solute $NH_4H_2PO_4$ in the sprayed solution imparted a highly rapid cooling effect to the coating through its endothermic de-composition reactions and because the decomposed products acted as numerous nucleation sites for the mini-mized spangles on the coating. Good surface appearances sand sound coating properties were obtained on this coating. Only regular spangles were formed on the coating by the forced convective air cooling. At the high nozzle spray pressure, zero spangles were formed on the coating by the pure water spray cooling. However, the coating had a dull and rough surface with craters sand cracks.

  • PDF

Solidification of Hot-Dip Galvanized Layer by Electrostatically Charged Aerosol Particles (정전 대전된 액적에 의한 용융 아연 도금층의 응고 방법)

  • 김상헌;김형민;정원철;정원섭
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.233-240
    • /
    • 2000
  • A novel electrostatic spraying method to solidify molten zinc coating layer was studied by SEM and measurement of sample's temperature. The sprayed droplets also served as nucleation sites in the solidification reaction of molten zinc but might leave the pitting mark by impinging on its surface especially at high spray pressure. Our experimental results showed that electric field could change the sprayed particle trajectories and assist the fine droplets to attach on the surface. Thus, by reducing the spray pressure and by applying the electric voltage higher than -20 KV to charge the droplets electrostatically, we could produce the spangle free galvanized coating layer without pitting.

  • PDF

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition (전처리를 이용한 탄소 나노 섬유의 균일한 SnO2 코팅막 형성)

  • Kim, Dong Ha;Riu, Doh-Hyung;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C-C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform $SnO_2$ layer. We pretreat the CNF surface by introducing $H_2O$ or $Al_2O_3$ (trimethylaluminum + $H_2O$) before the $SnO_2$ ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the $SnO_2$ layer morphology on the CNF. The $Al_2O_3$-pretreated sample shows a uniform $SnO_2$ layer, while island-type $SnO_x$ layers grow sparsely on the $H_2O$-pretreated or untreated CNF.

Nucleation and growth mechanism of nitride films deposited on glass by unbalanced magnetron sputtering (마그네트론 스퍼터링에 의하여 다양한 기판 위에 증착된 CrN 박막의 핵생성과 성장거동)

  • 정민재;남경훈;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • For the evaluation of nucleation and growth behaviors influenced by substrate properties, such as surface energy, structure and electrical properties, chromium nitride films (CrN) were deposited on various substrates (glass, AISI 1040 steel and Si (110) by unbalanced magnetron sputtering. X-ray diffraction and Atomic Force Microscopy (AFM) were used to study the microstructure and grain growth as a function of deposition time. The diffraction patterns of CrN thin films deposited on Si (110) exhibited crystalline structure with highly preferred orientation of (200) plane parallel to the substrate, whereas the films deposited on glass and AISI 1040 exhibited preferred orientations (200) and minor orientation (111), (311) or (220) plane. The orientation of films deposited both on glass and Si substrates did not depend on the bias voltage (Vs). The grain growth and structure of film deposited on AISI 1040 steel substrate are strongly influenced by the substrate bias in comparison with that deposited onto glass and Si substrates. The differences in the structure and grain growth of CrN films deposited onto different substrates are predominantly related to the properties of the substrate (structure and electrical conductivity).

Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD (마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과)

  • Kim, In-Sup;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The effect of DC bias on the growth of nanocrystalline diamond films on silicon substrate by microwave plasma chemical vapor deposition has been studied varying the substrate temperature (400, 500, 600, and $700^{\circ}C$), deposition time (0.5, 1, and 2h), and bias voltage (-50, -100, -150, and -200 V) at the microwave power of 1.2 kW, working pressure of 110 torr, and gas ratio of Ar/1%$CH_4$. In the case of low negative bias voltages (-50 and -100 V), the diamond particles were observed to grow to thin film slower than the case without bias. Applying the moderate DC bias is believed to induce the bombardment of energetic carbon and argon ions on the substrate to result in etching the surfaces of growing diamond particles or film. In the case of higher negative voltages (-150 and -200 V), the growth rate of diamond film increased with the increasing DC bias. Applying the higher DC bias increased the number of nucleation sites, and, subsequently, enhanced the film growth rate. Under the -150 V bias, the height (h) of diamond films exhibited an $h=k{\sqrt{t}}$ relationship with deposition time (t), where the growth rate constant (k) showed an Arrhenius relationship with the activation energy of 7.19 kcal/mol. The rate determining step is believed to be the surface diffusion of activated carbon species, but the more subtle theoretical treatment is required for the more precise interpretation.

Effect of Promoting/Inhibiting Bubble Generation of Carbonate Solution on Superhydrophilic/Superhydrophobic Surfaces (극친수/극소수 표면에서 탄산용액의 기포 발생 촉진/억제 효과 분석 연구)

  • Lee, Jeong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.77-83
    • /
    • 2022
  • When carbon dioxide in a liquid becomes supersaturated, carbon dioxide gas bubbles are generated in the liquid, and they ascend to the surface as they develop further. At this time, the inner wall of the cup with carbon gas attached is known as the entrapped gas cavity (EGS); once an EGS is established, it does not disappear and will continuously create carbon bubbles. This bubbling phenomenon can be activated or suppressed by changing the properties of the solid surface in contact with the carbonated liquid. In this study, the foaming of carbonated liquid is promoted or suppressed by modifying the wettability of the surface. A micro/nano surface structure is formed on the surface of an aluminum cup to produce a superhydrophilic surface, and a superhydrophobic surface similar to a lotus leaf is synthesized via fluorination. Experiment results show that the amount of carbon dioxide bubble generated differs significantly in the first few seconds depending on the surface, and that the amount of gas generated after it enters the stabilization period is the same regardless of the wettability of the cup surface.

Statistical Model to Describe Boiling Phenomena for High Heat Flux Nucleate Boiling and Critical Heat Flux

  • Ha, Sang-Jun;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.230-235
    • /
    • 1996
  • The new concept of dry area formation based on Poisson distribution of active nucleation sites and the concept of the critical active site density is presented. A simple statistical model is developed to predict the change of slope of the boiling curve up to critical heat flux (CHF) quantitatively. The predictions by the present model are in good agreement with the experimental data. Also it turns out that the present model well explains the mechanism on how the surface wettability influences CHF.

  • PDF

The Significant Structure Theory of Liquids Applied to Homogeneous Nucleation Theory

  • Jong-Myung Lee;Mu-Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.1
    • /
    • pp.26-28
    • /
    • 1980
  • The surface tensions, the chemical potentials and the densities of various liquids such as argon, nitrogen, helium, ammonia, and water are calculated using the significant structure theory of liquids. And using these calculated values, the critical supersaturation ratios and the radii of the above materials are determind according to the classical Becker-Doring and the revised Lothe-Pound theories. The results are compared with the experimental values and well agreed with the available experimental data.