• Title/Summary/Keyword: Surface modifications

Search Result 239, Processing Time 0.023 seconds

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution (수용액으로부터 질산성질소 제거를 위한 기술)

  • Seo, Yang Gon;Jung, Se Yeong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.

Analysis of Historical Documents from a Viewpoint of Paper Science

  • Han, Yoon-Hee;Enomae, Toshiharu;Isogal, Akira;Yamamoto, Hirofumi;Hotate, Michihisa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.147-152
    • /
    • 2006
  • Restoration of historical documents and arts has become important to inherit cultural properties. Most of historical documents were recorded on paper. Therefore, restoration of ancient papers is demanded and techniques for this purpose must be developed and sophisticated. In our study, several nondestructive methods for analyzing ancient paper have been developed. Image analysis using fast Fourier transform with suitable modifications was applied to optical micrographs of traditionally-handmade Korean and Japanese papers. This analysis determines the angle and anisotropy of fiber orientation of paper surfaces. Fiber orientation of traditionally-handmade Korean and Japanese papers was found to show their own characteristics in accordance with the motion of a papermaking screen made of bamboo splints. Consequently, the information on fiber orientation was found to be possible to distinguish the flow-sheet forming typical of Japanese paper and still-sheet forming typical of Korean paper. Moreover, the anisotropy was always higher for the screen side than for the top side, thus meaning that surface fiber orientation is possible to distinguish the two sides of paper of which papermaking history is unknown. An application of this technique to actual historical documents evidenced that wrapping papers were used as envelops with a lateral side up, namely, after rotating 90 degrees. A variety of cultural habits in writing letters was revealed by discrimination of the two sides.

  • PDF

NATURAL CONVECTION IN A TRIANGULAR POOL WITH VOLUMETRIC HEAT GENERATION (삼각형 형상의 풀 내에서 열원에 의한 자연대류 수치해석)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Song, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.302-310
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

  • PDF

PLGA-Based Nanoparticles as Cancer Drug Delivery Systems

  • Tabatabaei Mirakabad, Fatemeh Sadat;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl;Yamchi, Mohammad Rahmati;Milani, Mortaza;Zarghami, Nosratollah;Zeighamian, Vahideh;Rahimzadeh, Amirbahman;Alimohammadi, Somayeh;Hanifehpour, Younes;Joo, Sang Woo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.517-535
    • /
    • 2014
  • Poly (lactic-co-glycolic acid) (PLGA) is one of the most effective biodegradable polymeric nanoparticles (NPs). It has been approved by the US FDA to use in drug delivery systems due to controlled and sustained-release properties, low toxicity, and biocompatibility with tissue and cells. In the present review, the structure and properties of PLGA copolymers synthesized by ring-opening polymerization of DL-lactide and glicolide were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. Methods of preparation and characterization, various surface modifications, encapsulation of diverse anticancer drugs, active or passive tumor targeting and different release mechanisms of PLGA nanoparticles are discussed. Increasing experience in the application of PLGA nanoparticles has provided a promising future for use of these nanoparticles in cancer treatment, with high efficacy and few side effects.

Lateral Pressure on ,anchored Excavation Retention walls (앵카지지 굴착흙막이벽에 작용하는 측방토압)

  • 홍원표;이기준
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.81-98
    • /
    • 1992
  • Deep excavation increases utility of underground spaces for high buildings. subways etc. To excavate vertically the underground, safe earth retaining walls and supporting systems should be prepared. Recently anchors have been used to support the excavation wall. The anchored excavation has some advantages toprovide working space for underground construction. In this paper the prestressed anchor loads were measured by load cells which attacted to the anchors to support the excavation walls at eight construction fields. where under-ground deep excavation was performed on cohesionless soils. The lateral pressures on the retaining walls, which are estimated from the measured anchor forces, shows a trapezoidal distribution that the pressure increases linearly with depth from the ground surface to 30% of the excavation depth and then keeps constant value regardless of the stiffness of the walls. The maximum lateral pressure was same to 63% of the Ranking active earth pressure or 17% of the vertical overburden pressure at the final depth The investigation of the measured lateral pressure on the anchored excavation walls shows that empirical earth pressure diagram presented by Terzaghi-Peck and Tschebotarioff could be applied with some modifications to determine anchor loads for the anchored excavation in cohesionless soils.

  • PDF

A Study on the Electrochemical Properties Fabrication Process of Mg-Ca Sacrificial Anode for the Corrosion Protection of Steel Structures (철 구조물의 부식방지를 위한 Mg-Ca 희생양극의 전기화학적 특성과 제조에 관한 연구)

  • Park, Kang-Geun;Kim, Hye-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.73-80
    • /
    • 2006
  • It is an object of the present paper to investigate a electrochemical properties of Mg-based sacrificial anodes and the effect of calcium added from calcium chloride into magnesium on the melt protection during the melting. Electrochemical data will be correlated with processing control variables, and the microstructural change by the addition of CaCl2. Small addition of calcium into magnesium from CaCl2 imparts beneficial effect in electrochemical properties of Mg alloys, primarily, through microstructural modifications. In addition, the protection effect of the melts surface of Ca with low melting point modification is obtained by adding Ca not more than 0.6%.

  • PDF

Comprehending Polymer-Clay Nanocomposites and Their Future Works (고분자-점토 나노복합체 이해와 향후 연구 방향)

  • Choi, Yeong Suk;Chung, In Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.23-36
    • /
    • 2008
  • Polymer-clay nanocomposites, a novel organic-inorganic hybrid, attract much attention from both scientific fields and engineering fields due to their balanced improvements in mechanical properties as well as diffusion behaviors, including flame-retarding and barrier properties, with small amounts of clay. Preparation of polymer-clay nanocomposites, summarized as a process for uniform dispersion of hydrophilic layered clays in hydrophobic polymer matrixes, includes several technologies and scientific phenomena, such as surface-modifications of clay layers, physical properties of clays in liquids and dried states, polymer synthesis, polymer rheology, behaviors of polymer solutions/or monomers in the confined geometry, mechanical properties of polymers and clays. To comprehend complicated physical/chemical phenomena involved in the fabrication of nanocomposites, we reviewed physical properties of clays, structures of clays in nanocomposites, characterization of nanocomposites, the relation between morphology and physical property of nanocomposites, surveyed recent research trends, and then suggested a few strategies or methods for fabrication of nanocomposites reflecting future research directions.

HIGH Ra NUMBER NATURAL CONVECTION IN A TRIANGULAR POOL WITH A HEAT GENERATION (열원이 있는 삼각형 풀의 높은 Ra수 자연대류)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Hong, Seong-Wan;Song, Jin-Ho;Kim, Sang-Baik
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.66-74
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

Short term bond shear stress and cracking control of reinforced self-compacting concrete one way slabs under flexural loading

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.709-737
    • /
    • 2014
  • Fibre-reinforced self-compacting concrete (FRSCC) is a high-performance building material that combines positive aspects of fresh properties of self-compacting concrete (SCC) with improved characteristics of hardened concrete as a result of fibre addition. To produce SCC, either the constituent materials or the corresponding mix proportions may notably differ from the conventional concrete (CC). These modifications besides enhance the concrete fresh properties affect the hardened properties of the concrete. Therefore, it is vital to investigate whether all the assumed hypotheses about CC are also valid for SCC structures. In the present paper, the experimental results of short-term flexural load tests on eight reinforced SCC and FRSCC specimens slabs are presented. For this purpose, four SCC mixes - two plain SCC, two steel, two polypropylene, and two hybrid FRSCC slab specimens - are considered in the test program. The tests are conducted to study the development of SCC and FRSCC flexural cracking under increasing short-term loads from first cracking through to flexural failure. The achieved experimental results give the SCC and FRSCC slabs bond shear stresses for short-term crack width calculation. Therefore, the adopted bond shear stress for each mix slab is presented in this study. Crack width, crack patterns, deflections at mid-span, steel strains and concrete surface strains at the steel levels were recorded at each load increment in the post-cracking range.

Applications and Developmental Prospect of Protein Microarray Technology (Protein Microarray의 응용 및 발전 전망)

  • Oh, Young-Hee;Han, Min-Kyu;Kim, Hak-Sung
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.393-400
    • /
    • 2007
  • Analysis of protein interactions/functions in a microarray format has been of great potential in drug discovery, diagnostics, and cell biology, because it is amenable to large-scale and high-throughput biological assays in a rapid and economical way. In recent years, the protein microarray have broaden their utility towards the global analysis of protein interactions on a proteome scale, the functional activity analysis based on protein interactions and post-translational modifications (PTMs), and the discovery of biomarkers through profiling of protein expression between sample and reference pool. As a promising tool for proteomics, the protein microarray technology has advanced outstandingly over the past decade in terms of surface chemistry, acquisition of relevant proteins on a proteomic level, and detection methods. In this article, we briefly describe various techniques for development of protein microarray, and introduce developmental state of protein microarray and its applications.