• Title/Summary/Keyword: Surface mission

Search Result 174, Processing Time 0.033 seconds

The Study on the Oceanic Surface Wind Retrieval using TRMM Microwave Imager (TRMM TMI를 이용한 해상풍 추정에 관한 연구)

  • Kim, Young-Seup;Hong, Gi-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.47-53
    • /
    • 2002
  • Ocean surface wind speed was estimated using TRMM (Tropical Rainfall Measurement Mission) TMI (TRMM Microwave/Imager) data. It is used the TRMM TMI brightness temperature and National Data Buoy Center's buoy winds speed dataset near North-America to estimate by the algorithm of the ocean surface wind speed retrieval over North America. Comparing with the buoy data by D-matrix equation, the result that RMSE, BIAS, and correlation coefficient are 2.19 $ms^{-1}$, 1.10 $ms^{-1}$, and 0.81, respectively. Therefore the estimated oceanic surface wind speed by TRMM TMI brightness temperature data show that available to ocean research over upper ocean.

  • PDF

GEOLOGICAL AGE AND THICKNESS ESTIMATION OF LAVA AT MARE CRISIUM BY LUNAR SURFACE GIS

  • Kazama, Yoriko;Matsunaga, Tsuneo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.333-336
    • /
    • 2007
  • SELENE, a Japanese lunar mission, has been launched this year. There are large volumes of images that were already archived and will be archived by missions such as SELENE. Automatic image analysis systems, which extract useful information from large amounts of data, are now required. The authors propose Lunar Surface GIS, which archives lunar surface information collected by lunar orbiting spacecraft and conducts geological analysis automatically. This system includes automatic crater detection, automatic age determination, and lava thickness estimation methods. In this paper, methods for automatically determining the age and estimating the lava thickness of lunar mare are described. The lunar surface age was determined by analyzing data of detected crater size and number using a crater chronology method. Lava thickness was estimated by the extent of the overlying material around the crater as well as the composition of underlying terrain units. In this result, the age map at Mare Crisium suggests the mare had been formed 3.0-3.7 b.y. ago. The lava thickness result suggests the thickest part of the mare is distributed around the center of the mare. The Lunar Surface GIS can produce a geological map, age map, and mare lava thickness map, for example.

  • PDF

Comparison of Topex/Poseidon sea surface heights and Tide Gauge sea levels in the South Indian Ocean

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.70-75
    • /
    • 1998
  • The comparison of Topex/Poseidon sea surface heights and Tide Gauge sea levels was studied in the South Indian Ocean after Topex/Poseidon mission of about 3 years (11- 121 cycles) from January 1993 through December 1995. The user's handbook (AVISO) for sea surface height data process was used in this study Topex/Poseidon sea suface heights ($\zeta$$^{T/P}$), satellite data at the point which is very closed to Tide Gauge station, were chosen in the same latitude of Tide Gauge station. These data were re-sampled by a linear interpolation with the interval of about 10 days, and were filtered by the gaussian filter with a 60 day-window. Tide Gauge sea levels ($\zeta$$^{Argos}$, $\zeta$$^{In-situ}$ and $\zeta$$^{Model}$), were also treated with the same method as satellite data. The main conclusions obtained from the root-mean-square and correlation coefficient were as follows: 1) to Produce Tide Gauge sea levels from bottom pressure, in-situ data of METEO-FRANCE showed very good values against to the model data of ECMWF and 2) to compare Topex/Poseidon sea surface heights of Tide Gauge sea levels, the results of the open sea areas were better than those of the coast and island areas.

  • PDF

System Requirement Review of Lunar Surface magnetometer on the CLPS program

  • Jin, Ho;Kim, Khan-Hyuk;Lee, Seongwhan;Lee, Hyojeong;Seon, Daerac;Jung, Byungwook;Jang, Yunho;Park, Hyeonhu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute is participating as a South Korean partner in the Commercial Lunar Payload Services (CLPS)of NASA. In response, the Korea Astronomy and Space Science Institute is currently conducting basic research for the development of four candidate instrument payloads. The magnetic field instrument is one of them and it's scientific mission objective is the moon's surface magnetic field investigation. Therefore, the development requirement of the lunar surface magnetic field instrument were derived and the initial conceptual design was started. The magnetic field instrument has a 1.2 meter boom which has two three-axis fluxgate magnetometer sensors and one gyro sensor to get a attitude information of the boom. The concept of measuring the lunar surface magnetic field will carry out using multiple sensors by placing semiconductor type magnetic field sensors inside the electric box including boom mounted fluxgate sensors. In order to overcome the very short development period, we will use the KPLO (Korean Lunar Pathfinder Orbiter) magnetometer design and parts to improve reliabilities for this instrument. In this presentation, we introduce the instrument requirements and conceptual design for the Lunar surface magnetic field instruments.

  • PDF

A Numerical Analysis on Transient Temperatures of Fuel and Oil in a Military Aircraft (항공기내 연료 및 오일온도 변화에 대한 수치해석적 연구)

  • Kim, Yeong-Jun;Kim, Chang-Nyeong;Kim, Cheol-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1153-1163
    • /
    • 2002
  • A transient analysis on temperatures of fuel and oil in hydraulic and lubrication systems in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method with modified Dufort-Frankel scheme. Among various missions, air superiority mission was considered as a mission model with 20% hot day ambient condition in subsonic region. The ambience of the aircraft was assumed as turbulent flow. Convective heat transfer coefficient were used in calculating heat transfer between the aircraft surface and the ambience. For an aircraft on the ground, an empirical equation represented as a function of free-stream air velocity was used. And the heat transfer coefficient for flat plate turbulent flow suggested by Eckert was employed for in-flight phases. The governing equations used in this analysis are the mass and energy conservation equations on fuel and oils. Here, analysis of fuel and oil temperature in the engine was not carried out. As a result of this analysis, the ground operation phase has shown the highest temperature and the largest rate of temperature increase among overall mission phases. Also, it is shown that fuel flow rate through fuel/oil heat exchanger plays an important role in temperature change of fuel and oil. This analysis could be an important part of studies to ensure thermal stability of the aircraft and can be applicable to thermal design of the aircraft fuel system.

Thermal Analysis of TRIO-CINEMA Mission

  • Yoo, Jae-Gun;Jin, Ho;Seon, Jong-Ho;Jeong, Yun-Hwang;Glaser, David;Lee, Dong-Hun;Lin, Robert P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO)-CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA) is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from $-70^{\circ}C$ to $-40^{\circ}C $ and decrease the average temperature of the magnetometer from $+93^{\circ}C$ to $-4^{\circ}C$ using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

Prediction of Atomic Oxygen Erosion for Coating Material of LEO Satellite's Solar Array by Using the Real Ram Direction Accumulation Method (실 궤도면 누적량 계산법을 활용한 원자산소의 저궤도위성 태양전지판 코팅재료 침식량 예측)

  • Kim, You-Gwang;Lee, Sang-Taek;Baek, Myung-Jin;Lee, Suk-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.1-5
    • /
    • 2017
  • This objective of this study is an effort to predict atomic oxygen (ATOX) erosion as ot affects coating material(s) of LEO satellite's solar array by implementing the 'real ram direction accumulation method'. We observed the difference of ATOX Fluence between the previous 'Maximum worst case estimation method' and 'Real ram direction accumulation method' and we plan to implement these findings for the purpose of evaluating the level of compliance for design submitted by solar array suppliers. We used the SPENVIS(Space Environment Information System) served by ESA based on assumption orbit information, and applied the satellite orbit calculation software for calculating the ATOX Flux crushed solar array in real orbit surface.

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

Review of SMOS Mission and Current Operation (SMOS 위성 개발 및 운용 현황)

  • Park, Hyuk;Lee, Ho-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • The second satellite in ESA's Earth Explorer series, the Soil Moisture and Ocean Salinity (SMOS) mission was launched into orbit at November 1, 2009. The SMOS will play a key role in the monitoring of climate change on a global scale using the payload of L-band synthetic aperture radiometer. It is the first ever satellite designed both to map sea surface salinity and to monitor soil moisture on a global scale, and will provide the important data to study the water cycle among oceans, the atmosphere and land. To introduce the operation of the SMOS, this paper shows brief summary of appearance and current operation.

Construction of Gridded Wind-stress Products over the World Ocean by Tandem Scatterometer Mission

  • Kutsuwada Kunio;Kasahara Minoru;Morimoto Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.192-195
    • /
    • 2004
  • Products of gridded surface wind and windstress vectors over the world ocean have been constructed by satellite scatterometer data with highly temporal and spatial resolutions. Even if the ADEOS-II/SeaWinds has supplied surface wind data only for short duration in Apr. to Oct. 2003 to us, it permits us to construct a product with higher resolution together with the Qscat/SeaWinds. In addition to our basic product with its resolution of $1^{\circ}\times1^{\circ}$ in space and daily in time, we try to construct products with $1/2^{\circ}\times1/2^{\circ}$ and semi- and quarter-daily resolution. These products are validated by inter-comparison with in-situ data (TAO and NDBC buoys), and also compared with numerical weather prediction(NWP) ones (NCEP reanalysis). Result reveals that our product has higher reliability in the study area than the NCEP's. For the open ocean regions in the middle and high latitudes where there are no in-situ data, we find that there are clear differences between them. Especially in the southern westerly region of 400-600S, the' wind-stress magnitudes by the NCEP are significantly larger than the others, suggesting that they are overestimated. We also calculate wind-stress curl field that is an important factor for ocean dynamics and focus its spatial character in the northwestern Pacific around Japan. Positive curl areas are found to cover from southwest to northeast in our focus region and almost correspond to the Kuroshio path. It is suggested that the vorticity field in the lower atmosphere is related to the upper oceanic one, and thus an aspect of air-sea interaction process.

  • PDF