• Title/Summary/Keyword: Surface microstructure

Search Result 1,846, Processing Time 0.027 seconds

Effect of Heat Treatment on Mechanical Reliability of Solder Joints in LED Package (LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 열처리의 영향)

  • Ko, Min-Kwan;Ahn, Jee-Hyuk;Lee, Young-Chul;Kim, Kwang-Seok;Yoon, Jeong-Won;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • We studied the effect of heat treatment on the microstructures and mechanical strength of the solder joints in the Light Emitting Diode (LED) packages. The commercial LED packages were mounted on the a flame resistance-4 (FR4) Printed Circuit Board (PCB) in the reflow process, and then the joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 hours, respectively. After the heat treatment, we measured the shear strength of the solder joints between the PCB and the LED packages to evaluate their mechanical property. We used Pb-free Sn-3.0Ag-0.5Cu solder to bond between the LED packages and the PCBs using two different surface finishes, Electroless Nickel-Immersion Gold (ENIG) and Electroless Nickel-Electroless Palladium-Immersion Gold (ENEPIG). The microstructure of the solder joints was observed by a scanning electron microscope (SEM). (Cu,Ni)6Sn5 intermetallic compounds (IMCs) formed between the solder and the PCB, and the thickness of the IMCs was increased with increasing aging time. The shear strength for the ENIG finished LED package increased until aging for 300 h and then decreased with increasing aging time. On the other hand, in the case of an ENEPIG finished LED package, the shear strength decreased after aging for 500 h.

Microstructure Analysis of Fe Thin Films Prepared by Ion Beam Deposition (이온빔 증착법에 의해 제조된 철박막의 미세조직 분석)

  • Kim, Ka Hee;Yang, Jun-Mo;Ahn, Chi Won;Seo, Hyun Sang;Kang, Il-Suk;Hwang, Wook-Jung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.458-463
    • /
    • 2008
  • High purity Fe thin films were prepared by the ion beam deposition method with $^{56}Fe^{+}$ions on the Si substrate at the room temperature. The Fe thin films were deposited at the ion energy of 50 eV and 100 eV. Microstructural properties were investigated on the atomic scale using high-resolution transmission electron microscopy (HRTEM). It was found that the Fe thin film obtained with the energy of 50 eV having an excellent corrosion resistance consists of the amorphous layer of ~15 nm in thickness and the bcc crystalline layer of about 30 nm in grain size, while the thin film obtained with the energy of 100 eV having a poor corrosion resistance consists of little amorphous layer and the defective crystalline layer. Furthermore the crystal structures and arrangements of the oxide layers formed on the Fe thin films were analyzed by processing of the HRTEM images. It was concluded that the corrosion behavior of Fe thin films relates to the surface morphology and the crystalline structure as well as the degree of purification.

Failure Analysis of Ti alloy Screws in Fixing Fractured Spines (척추교정 티타늄 앵커나사 파단 손상원인 분석)

  • Choe, Byung Hak;Kim, Moon Kyu;Kim, Seong Eun;Shim, Yoon Im;Lee, Young Jin;Jeong, Hyo Tae;Choi, Won Yeol
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.983-988
    • /
    • 2011
  • Failure analyses of the screws in spinal fixation devices were carried out. The fractured screws were retrieved from a patient who had spinal surgery in the thoracic vertebrae from number 10 to 15. The failure occurred one month after the removal of the braces. Microstructures and fracture surfaces were examined by optical and scanning electron microscopy. The microstructures of the screws corresponded to annealed Ti-6Al-4V bar. However, in the vicinity of the screw surface, there was an insufficient number of fine precipitates. Fracture surfaces showed typical fatigue failure modes. Regarding the fact that no machining defects were detected, fatigue crack initiation might have been caused by the lack of precipitates near the screw surfaces. Only the fourth of five fixed screws was severely stress-concentrated by the action of the spinal bones, while the stress of the 4th screw was decreased to half of its acceptable level when the screw was supplemented by one more, which might have been fixed in the 6th vertebra under the 5th position by the switching of its position. The stress simulation was conducted by ANSYS with 3D CAD of PRO/E in order to understand the stress concentration behavior and to provide an effective spinal surgery guide.

Optical properties and color analysis of various pearl shells (다양한 진주조개 패각의 색상 및 광학적 특성 분석)

  • Lee, Myung-Jin;Chae, Weon-Sik;Seo, Jin-Gyo;Park, Jong-Wan
    • The Korean Journal of Malacology
    • /
    • v.25 no.3
    • /
    • pp.203-210
    • /
    • 2009
  • Optical properties and color analysis of nacreous layers were performed using various pearl shells. The cross section and microstructure of the surface in each nacreous layers were observed through a SEM (Scanning Electron Microscope), and the diffraction pattern on SEM images was analyzed using FFT (Fast Fourier Transform). Through these analysises, it was verified that the color and optical characteristics are closely related to the structure of nacreous layers. Incident angle-dependent reflection spectrum was used to examine the phenomena of color differenceas the direction of observation. Quantified values on the color change were obtained by CIE $L^*a^*b^*$ color scale. Using this research, database for the characteristics of natural pearl shells can be established, and the precise analytic method for observation of pearl shells was suggested.

  • PDF

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.

Variation in optical, dielectric and sintering behavior of nanocrystalline NdBa2NbO6

  • Mathai, Kumpamthanath Chacko;Vidya, Sukumariamma;Solomon, Sam;Thomas, Jijimon Kumpukattu
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.77-91
    • /
    • 2013
  • High quality nanoparticles of neodymium barium niobium ($NdBa_2NbO_6$) perovskites have been synthesized using an auto ignition combustion technique for the first time. The nanoparticles thus obtained have been characterized by powder X-ray diffraction, thermo gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscopy. UV-Visible absorption and photoluminescence spectra of the samples are also recorded. The structural analysis shows that the nano powder is phase pure with the average particle size of 35 nm. The band gap determined for $NdBa_2NbO_6$ is 3.9 eV which corresponds to UV-radiation for optical inter band transition with a wavelength of 370nm. The nanopowder could be sintered to 96% of the theoretical density at $1325^{\circ}C$ for 2h. The ultrafine cuboidal nature of nanopowders with fewer degree of agglomeration improved the sinterability for compactness at relatively lower temperature and time. During the sintering process the wide band gap semiconducting behavior diminishes and the material turns to a high permittivity dielectric. The microstructure of the sintered surface was examined using scanning electron microscopy. The striking value of dielectric constant ${\varepsilon}_r=43$, loss factor tan ${\delta}=1.97{\times}10^{-4}$ and the observed band gap value make it suitable for many dielectric devices.

Trend and Prospect of Thin Film Processing Technology (박막제조 기술의 동향과 전망)

  • Jeong, Jae-In;Yang, Ji-Hooon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size

  • Kim, Kwangbae;Lee, Hyeryeong;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2019
  • The photovoltaic properties of $TiO_2$ used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm $TiO_2$ as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each $TiO_2$ layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the $TiO_2$ shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of $TiO_2$ and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm $TiO_2$ demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of $TiO_2$. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the $TiO_2$ particle size, which is explained by a one-dimensional model of the electron path through various $TiO_2$ particles.

A Study on the Mechanical Properties and Moisture Control Performance of Diatomite filled Olefin Foams (규조토를 함유한 올레핀계 폼의 기계적 물성 및 수분 제어 성능에 관한 연구)

  • Kim, Jae Yang;Lee, Ji Eun;Seong, Dong Gi
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Products using diatomaceous earth, which are used in various fields, are optimized for moisture absorption, but have problems such as high hardness, powder flying, and rough surface feel. To improve this, an olefin-based foam having low hardness and high elasticity was prepared by adding an excessive amount of inorganic material using EVA (Ethylene vinyl acetate) having low hardness and excellent elasticity. Diatomaceous earth was added to impart moisture absorption characteristics of the foam, and the moisture absorption/drying characteristics showed a moisture absorption rate of about 10 to 15% and a moisture drying rate of 10 to 70% depending on the content of the diatomaceous earth. Through this study, it was possible to manufacture a water-absorbing olefin-based foam with diatomaceous earth added, and it was confirmed that the diatomaceous earth added to the foam had a great influence on water absorption and dissipation due to its microstructure and characteristics.