DOI QR코드

DOI QR Code

Variation in optical, dielectric and sintering behavior of nanocrystalline NdBa2NbO6

  • Received : 2012.04.18
  • Accepted : 2013.03.29
  • Published : 2013.06.25

Abstract

High quality nanoparticles of neodymium barium niobium ($NdBa_2NbO_6$) perovskites have been synthesized using an auto ignition combustion technique for the first time. The nanoparticles thus obtained have been characterized by powder X-ray diffraction, thermo gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscopy. UV-Visible absorption and photoluminescence spectra of the samples are also recorded. The structural analysis shows that the nano powder is phase pure with the average particle size of 35 nm. The band gap determined for $NdBa_2NbO_6$ is 3.9 eV which corresponds to UV-radiation for optical inter band transition with a wavelength of 370nm. The nanopowder could be sintered to 96% of the theoretical density at $1325^{\circ}C$ for 2h. The ultrafine cuboidal nature of nanopowders with fewer degree of agglomeration improved the sinterability for compactness at relatively lower temperature and time. During the sintering process the wide band gap semiconducting behavior diminishes and the material turns to a high permittivity dielectric. The microstructure of the sintered surface was examined using scanning electron microscopy. The striking value of dielectric constant ${\varepsilon}_r=43$, loss factor tan ${\delta}=1.97{\times}10^{-4}$ and the observed band gap value make it suitable for many dielectric devices.

Keywords

References

  1. An, C.H., Tang, K.B., Wang, C.R., Shen, G.Z., Jin,Y. and Qian, Y.T. (2002), "Characterization of $LiNbO_{3}$ nanocrystals prepared via a convenient hydrothermal route", Mater. Res. Bull., 37(11), 1791-1796. https://doi.org/10.1016/S0025-5408(02)00869-3
  2. Aneesh, P.M., Mini, K.K. and Jayaraj, M.K. (2009), "Hydrothermal synthesis and characterization of undoped and Eu doped $ZnGa_{2}O_{4}$ nanoparticles", J. Electrochem. Soc., 156(3), K33-K36. https://doi.org/10.1149/1.3070662
  3. Aruna, S.T. and Mukasyan, A.S. (2008), "Combustion synthesis and nanomaterials", Cur. Opin. Solid. St. Mater., 12, 44-50. https://doi.org/10.1016/j.cossms.2008.12.002
  4. Aven, M. and Prener, J.S. (1967), Physics and Chemistry of II-VI Compounds, North Holand, Amsterdam.
  5. Bhalla, A.S., Guo, R.Y. and Roy, R. (2000), "The perovskite structure - a review of its role in ceramic science and technology", Mater. Res. Innov., 4(1), 3-26. https://doi.org/10.1007/s100190000062
  6. Chinarro, E., Jurado, J.R. and Colomer, M.T. (2007), "Synthesis of ceria-based electrolyte, nanometric powders by urea-combustion technique", J. Eur. Ceram. Soc., 27(13-15), 3619-3623. https://doi.org/10.1016/j.jeurceramsoc.2007.02.007
  7. Cruickshank, D. (2003), "1-2 GHz dielectrics and ferrites: overview and perspectives", J. Eur. Ceram. Soc., 23(14), 2721-2726. https://doi.org/10.1016/S0955-2219(03)00145-6
  8. Barton, D.G., Shtein, M., Wilson, R.D., Soled, S.L. and Iglesia, E. (1999), "Structure and electronics properties of solid acids based on tungsten oxide nanostructures", J. Phys. Chem., 103(4) 630-640. https://doi.org/10.1021/jp983555d
  9. Deganello, F., Marci, G. and Deganello, G. (2009), "Citrate-nitrate auto-combustion synthesis of perovskitetype nanopowders: A systematic approach", J. Eur. Ceram. Soc., 29(3), 439-450. https://doi.org/10.1016/j.jeurceramsoc.2008.06.012
  10. Denzler, D., Olschewski, M. and Sattler, K. (1998), "Luminescence studies of localized gap states in colloidal ZnS nanocrystals", J. Appl. Phys.,84(5), 2841-2845. https://doi.org/10.1063/1.368425
  11. Dias, A., Abdulkalam, L., Sebastian, T.M., Paschol, C.W.A. and Moreira, L.R. (2006), "Chemical substitution in Ba (RE1/2Nb1/2)O-3 (RE = La, Nd, Sm, Gd, Tb, and Y) microwave ceramics and its influence on the crystal structure and phonon modes", Chem. Mater., 18, 214 -220. https://doi.org/10.1021/cm051982f
  12. Gleiter, H. (2000), "Nanostructured materials: basic concepts and microstructure", Acta Mater., 48(1), 1-29. https://doi.org/10.1016/S1359-6454(99)00285-2
  13. Goldberg, P. (1966), Luminescence of Inorganic Solids, Academic Press, New York.
  14. Gruber, D., Kraus, F. and Muller, J. (2003), "A novel gas sensor design based on $CH_{4}/H_{2}/H_{2}O$ plasma etched ZnO thin films", Sensor. Actuat. B Chem., 92(1-2), 81-89. https://doi.org/10.1016/S0925-4005(03)00013-3
  15. Guo, Y.P., Kakimoto, K. and Ohsato, H. (2004), "Phase transitional behavior and piezoelectric properties of ($Na_{0.5}K_{0.5}$) $NbO_{3}$-$LiNbO_{3}$ ceramics", Appl. Phys.Lett., 85(18), 4121-4123. https://doi.org/10.1063/1.1813636
  16. Henglein, A, (1989), "Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles", Che. Rev., 89(8), 1861-1873. https://doi.org/10.1021/cr00098a010
  17. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P. (2001), "Room-temperature ultraviolet nanowire nanolasers", Science 292(5523), 1897-1899. https://doi.org/10.1126/science.1060367
  18. Hughes, H., Iddles, D.M. and Reaney, I.M. (2001), "Niobate-based microwave dielectrics suitable for third generation mobile phone base stations", Appl. Phys. Lett., 79(18), 2952-2954. https://doi.org/10.1063/1.1414296
  19. James, J., Jose, R., John, A.M. and Koshy, J. (2004), "Single Step process for the synthesis of nanoparticles of ceramic oxide powders", US Patent No 6, 835, 367.
  20. Kurian, J., John, A.M., Sajith, P.K., Koshy, J., Pai, S.P. and Pinto, R. (1998), "Superconducting $YBa_{2}Cu_{3}O_{7-\delta}$ -Ag Thin films (Tc(0) = 90 K) by pulses Laser Deposition on Polycrystalline $Ba_{2}NdNbO_{6}$: A novel substrate for $YBa_{2}Cu_{3}O_{7-\delta}$ -Ag films", Jpn. J. Appl. Phys., 37(10A), L1114-L1147.
  21. Jose, R., James, J., John, A.M., Divakar, R. and Koshy, J. (2000), "Synthesis of nanosized $Ba_{2}LaZrO_{0.5}$ ceramic powders through a novel combustion route", J. Mater. Synth. Process, 8(1), 1-5. https://doi.org/10.1023/A:1009431809101
  22. Keis, K., Magnusson, E., Lindstrom, H., Lindquist, S.E., and Hagfeldt, A. (2002), "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes", Sol. Energy Mater. Sol. Cells, 73(1), 51-58. https://doi.org/10.1016/S0927-0248(01)00110-6
  23. Kong, L.B., Zhang, T.S., Ma, J. and Boey, F. (2008), "Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique", Prog. Mater.Sci., 53(2), 207-322. https://doi.org/10.1016/j.pmatsci.2007.05.001
  24. Koshy, J., Kurian, J., Thomas, J.K., Yadava, Y.P. and Dhamodaran, A.D. (1994), "Rare earth Barium niobates a new class of potential substrates for YBCO superconductor", Jpn. J. Appl. Phys., 33,117-121. https://doi.org/10.1143/JJAP.33.117
  25. Koshy, J., Kumar, K.S., Kurian, J., Yadava, Y.P. and Damodaran, A.D. (1994), "$YBa_{2}SnO_{0.5}$, a novel ceramic substrate for YBCO and BiSCCO superconductors", Bull. Mater. Sci., 17(6), 577-584. https://doi.org/10.1007/BF02757541
  26. Koshy, J., Thomas, J.K., Kurian, J., Yadava, Y.P. and Damodaran, A.D. (1993), "$GdBa_{2}NbO_{6}$ a new ceramic substrate for YBCO thick films", Mater. Lett., 17(6), 393-397. https://doi.org/10.1016/0167-577X(93)90133-I
  27. Kurian, J., Nair, K.V.O., Sajith, P.K., John, A.N. and Koshy, J., (1998), "Bi(2223) thick films ($Tc_{(0)}$ = 109K) on $Ba_{2}GdNbO_{6}$ a new perovskite ceramic substrate for BSCCO superconductor", Appl. Supercond., 6(6), 301-304.
  28. Magrez, A., Vasco, E., Seo, J.W., Dieker, C., Setter, N. and Forro, L. (2006), "Growth of single crystalline $KNbO_{3}$ nanostructures", J. Phys. Chem. B, 110(1), 58-61. https://doi.org/10.1021/jp053800a
  29. Mahan, G.D. (1983), "Intrinsic defects in ZnO varistors", J. Appl. Phys., 54(7), 3825-3832. https://doi.org/10.1063/1.332607
  30. Matthias, B.T., and Remeika, J.P. (1949), "Ferroelectricity in the Ilmenite Structure", Phys.Rev., 76(12), 1886-1887.
  31. Zhang, M., Hue, C., Liu, H., Xiong, Y.F. and Zhang, Z. (2009), "A rapid - response humidity sensor based on $BaNbO_{3}$ crystals", Sensor. Actuat. B Chem., 136(1), 128-132. https://doi.org/10.1016/j.snb.2008.09.021
  32. Niederberger, M., Pinna, N., Polleux, J. and Antonietti, M. (2004), "A general soft-chemistry route to perovskites and related materials: Synthesis of $BaTiO_{3}$, $BaZrO_{3}$, and $LiNbO_{3}$ nanoparticles", 43(17), Angew. Chem. Int. Edit., 2270-2273. https://doi.org/10.1002/anie.200353300
  33. Padmakumar, H., Vijayakumar, C., George, C.N., Solomon, S., Jose, R., Thomas, J.K. and Koshy, J. (2008), "Characterization and sintering of $BaZrO_{3}$ nanoparticles synthesized through a single-step combustion process", J. Alloy. Compd., 458(1-2), 528-531. https://doi.org/10.1016/j.jallcom.2007.04.032
  34. Patro, P.K., Kulkarni, A.R. and Harendranath, C.S. (2003), "Combustion synthesis of $Sr_{0.5}Ba_{0.5}Nb_{2}O_{6}$ and effect of fuel on its microstructure and dielectric properties", Mater. Sci. Bull., 38(2), 245-259. https://doi.org/10.1023/A:1021145028096
  35. Payling, R. and Larkins, P. (2000), Optical Emission Line of Elements, John Wiley and sons, New York.
  36. Prasanth, C.S., Padmakumar, H., Pazhani, R., Solomon, S. and Thomas, J.K. (2008), "Synthesis, characterization and microwave dielectric properties of nanocrystalline $CaZrO_{3}$ ceramics", J. Alloy. Compd., 464(1-2), 306-309. https://doi.org/10.1016/j.jallcom.2007.09.098
  37. Ramanujan, R.V., (2003), "Nanostructured electronic and magnetic materials", Sadhana, 25(1-2), 81-96.
  38. Ratheesh, R., Wohlecke, M., Berge, B., Wahlbrink, T., Haeuseler, H., Rul, E., Blachnik, R., Balan, P., Santana, N. and Sebastian, M.T., (2000), "Raman study of the ordering in $SrB_{0.5}Nb_{0.5}O_{3}$ compounds", J. Appl. Phys., 88, 2813-2818. https://doi.org/10.1063/1.1287762
  39. Ianos, R., Lazau, I., Pacurariu, C. and Barvinschi, P. (2009), "Fuel mixture approach for solution combustion synthesis of $Ca_{3}Al_{2}O_{6}$ powders", Cement Concrete Res., 39(7), 566-572. https://doi.org/10.1016/j.cemconres.2009.03.014
  40. Rout, D., Babu, G.S., Subramanian,V. and Sivasubramanian,V. (2008), "Study of Cation Ordering in $Ba(Yb_{1/2}Ta_{1/2})O_{3}$ by X-Ray Diffraction and Raman Spectroscopy", Int. J. Appl. Ceram.Technol., 5(5), 522-528. https://doi.org/10.1111/j.1744-7402.2008.02230.x
  41. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. and Nakamura, M. (2004), "Lead-free piezoceramics", Nature, 432(7013), 84-87. https://doi.org/10.1038/nature03028
  42. Schwesyg, J.R., Eggert, H.A., Buse, K., Sliwinska, E., Khalil, S., Kaiser, M. and Meerholz, K. (2007), "Fabrication and optical characterization of stable suspensions of iron- or copper-doped lithium niobate nanocrystals in heptanes", Appl. Phys. B- Lasers and Optics, 89(1), 15-17. https://doi.org/10.1007/s00340-007-2750-3
  43. Specking, W., Kiesel, H., Nakajima, H., Ando, T., Tsuji, H., Yamada, Y. and Nagata, M. (1993), "First results of stress effects on Ic of $Nb_{3}Al$ cable in conduit fusion superconductors", IEEE. T. Appl. Supercon., 3(1),1342-1345. https://doi.org/10.1109/77.233651
  44. Suryanarayana, C. (1994), "Structure and properties of nanocrystalline materials", Bull. Mater. Sci.,17(4), 307-346. https://doi.org/10.1007/BF02745220
  45. Thomas, J.K., Padmakumar, H., Pazhani, R., Solomon, S., Jose, R. and Koshy, J. (2006), "Synthesis of strontium zirconate as nanocrystals through a single step combustion process", Mater. Lett., 61(7), 1592-1595.
  46. Vijayakumar, C., Padma Kumar, H., Solomon, S., Thomas, J.K., Wariar, P.R.S. and John, A. (2009), "FTRaman and FT-IR vibrational spectroscopic studies of nanocrystalline $Ba_{2}RESbO_{6}$ (RE = Sm, Gd, Dy and Y) perovskites", J. Alloys Compd., 480(2), 167-170. https://doi.org/10.1016/j.jallcom.2009.01.123
  47. Wang, L.H., Yuan, D.R., Duan, X.L., Wang, X.Q. and Yu, F.P. (2007), "Synthesis and characterization of fine lithium niobate powders by sol-gel method", Crys. Res. Technol., 42(4), 321-324. https://doi.org/10.1002/crat.200610822
  48. Wang, X., Zhuang, J., Peng, Q. and Li, Y. (2005), "A general strategy for nanocrystal synthesis", Nature, 437, 121-124. https://doi.org/10.1038/nature03968
  49. Wood, B.D., Mocanu, V. and Gates, B.D. (2008), "Solution-phase synthesis of crystalline lithium niobate nanostructures", Adv. Mater., 20(23), 4552-4556. https://doi.org/10.1002/adma.200800333
  50. Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J. and Bossi, D.E. (2000), "A review of lithium niobate modulators for fiber-optic communications systems", IEEE J. Sel. Top. Quant., 6(1), 69-82. https://doi.org/10.1109/2944.826874
  51. Zhao, L.L., Steinhart, M., Yosef, M., Lee, S.K. and Schlecht, S. (2005), "Large-scale templateassisted growth of $LiNbO_{3}$ one-dimensional nanostructures for nano-sensors", Sens. Actuat. B-Chem., 109(1), 86-90. https://doi.org/10.1016/j.snb.2005.03.093
  52. Zupan, K., Marinsek, M., Pejovnik, S., Macek, J. and Zore, K. (2004), "Combustion synthesis and the influence of precursor packing on the sintering properties of LCC nanopowders", J. Eur. Ceram. Soc., 24,1935-1939. https://doi.org/10.1016/S0955-2219(03)00546-6

Cited by

  1. Electrical and optical properties of nano-crystalline RE-Ti-Nb-O 6 (RE = Dy, Er, Gd, Yb) synthesized through a modified combustion method vol.5, pp.2, 2017, https://doi.org/10.1016/j.jascer.2017.03.008