• Title/Summary/Keyword: Surface layer strength

Search Result 727, Processing Time 0.025 seconds

The Relationship Between the Quality of Surface Layer of Concrete Floor and the Defect of Self-Leveling Material - Evaluation Method about Surface Layer Quality of Concrete Floor Groundwork Corresponding to Defect in Self-leveling Material (Part II) - (콘크리트 표층부 품질이 SL재의 하자에 미치는 영향 - SL재의 하자 발생에 영향을 미치는 콘크리트 표층부의 품질 평가방법(II) -)

  • Kim, Doo-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.125-132
    • /
    • 2007
  • The use of Self-Leveling material is increasing recently. This paper assesses the quality of surface layer of concrete floor when Self-Leveling material is defective. The paper shows how to predict the defect of SL material before construction begins. The relationship between the quality of surface layer of concrete floor and the defect of SL material was determined and the quality of surface layer of concrete floor was then estimated. The relations between the quality of surface layer and the defect of SL material were determine considering surface strength, moisture, and consistency of surface layer. Absorbing amount was used as the indicator of consistency and the absorbing amount of test material was measured. Then the relations between the test material and surface strength were determined. Generally concrete floor with greater consistency has greater surface strength, however in this study, we hound that high impact concrete floor could have lower surface strength as the consistency gets bigger. The relations between the level of defect occurred in SL material and the quality of surface layer were examined and we clarified that the surface layer with lower consistency gets higher possibility to occur exfoliation in early stage, one or two weeks after constructing SL material. When the consistency is sufficient, the occurring situation of defect depends upon the moisture of surface layer. Little amount of moisture gets higher possibility not to occur the defect. As the amount increases, fissure generates and early exfoliation may occur. In addition, the level of fissure is highly related with the surface strength.

Shear Bond Strength of Zirconia and Ceramics according to Dental Zirconia Surface Treatment (치과용 지르코니아 표면처리방법에 따른 지르코니아와 전장용 도재의 결합강도 관찰)

  • Lee, Gwang-Young;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: The dental CAD / CAM system has been popular with the development of the digital dental industry. Zirconia is a typical material in dental CAD / CAM systems. Zirconia crowns are classified into single layer and double layer. This study is about the double layer crown of zirconia. The surface roughness, bond strength and fracture patterns of the zirconia surface were observed. Methods: Zirconia blocks were cut using a low speed cutter. Sintered to form a plate shape (6mm × 6mm × 3mm). The prepared specimens were surface treated in four ways. Surface roughness and bond strength were measured. And the fracture pattern was observed. Results: Result of surface treatment of zirconia. The surface roughness test results were as ET 2.87 ㎛, ST 2.67 ㎛, LT 2.44 ㎛, AT 2.41 ㎛, CN 2.08 ㎛ order. Bond Strength results were as LT 25.09 MPa, AT 23.27 MPa, ST 21.27 MPa, ET 21.09 MPa, CN 16.12 MPa order. Fracture patterns showed cohesive failure of 25-50% of the bond area. Conclusion: Surface roughness, bond strength and fracture pattern of the zirconia surface were observed. Etching the surface treatment of zirconia materials has been shown to affect the surface roughness. Zirconia special binder treatment has been shown to affect the bond strength improvement.

The Improvement of Surface Layer Using Cement-hardening Agents in Dredged and Reclaimed Marine Clay (준설매립된 해성점성토에서 시멘트계 고화재를 이용한 표층개량)

  • NAM JUNG-MAN;YUN JUNG-MANN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.46-51
    • /
    • 2004
  • The surface layer in dredged and reclaimed marine clay is improved by mixing of shallow soils and hardening agents, which is made of cement, containing some other special admixtures. Tests in both laboratory and field settings are performed to investigate the improvement effect and strength properties of cement-stabilized soils. The test results show that the hardening agent sufficiently improves the soil properties of the surface layer, while increasing the load-carrying capacity. The strength of cement-stabilized soils depends, primarily, on water-to-cement ratio and curing temperature. That is, the higher curing temperature and the longer curing time, the higher the strength in cement-stabilized soils. The high ratio of water-ta-cement results in a lower strength.

A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears (침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구)

  • 류성기;전형주;문봉호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.959-963
    • /
    • 1996
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending fatigue strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs compared to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears (침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구)

  • LYU, Sung-Ki;JEON, Hyung-Ju;Moon, Bong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.61-67
    • /
    • 1997
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs comparaed to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF LUTING GLASS IONOMER AND DENTIN TREATED WITH CALCIUM SOLUTION (칼슘수용액으로 처리한 상아질과 합착용 글래스아이오노머의 전단결합강도에 관한 연구)

  • Paik, Young-Girl;Lee, Sung-Bok;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.593-610
    • /
    • 1996
  • The objective of this paper was to evaluate the shear bond strength of luting glass ionomer cement with defferent calcium based solution treatment on dentin surface. 120 extracted human teeth were classified into 12 group based on presence of smear layer on dentin surface and type of treatment solution. Smear layer remove on dentin surface was done using 6% citric acid for 60 seconds. Five different dentin surface treatment solutions(calcium acetate, calcium carbonate, clacium chlorided, calcium hydroxide, and calcium phosphate) were evaluated in this study. After surface modification, metal ring(inner diameter : 3mm, depth : 1mm) was placed to expose the same dentin surface area and inner space was filled with luting glass ionomer cement according to the recommended procedure for stadard clinical procedure. The shear bond strength of glass ionomer cement was determined after 24 hours. SEM was used for the evaluation of the surface morphologic changes and EDAX analysis was done for determination of the change of the calcium contents of treated dentin. Follwing conclusion can be drawn : 1. In the group of the dentin surface with smear layer, the calcium carbonate solution was the most effective for the increase of the clacium content and the shear bond strength of glass ionomer cement to dentin surfaces. 2. In the group of the calcium carbonate treated dentin with msear layer, the shear bond strength was increased twice compared to the control group and cohesive failure mode was observed. 3. The shear bond strength of cement was increased significantly be the removal of smear layer using 6% citric aicd. However, additional calcium solution treatments were not effective for further bond strength increase. 4. The shear bond strength of cement was significantly improved by both of the removal of smear layer and the calcium solution treatment, and the former was more effective for bond strength improvement. 5. The smear layer removed/calcium solution treated groups showed dentinal tubule obstruction and crystal attachment in SEM evaluation. However, the shear bond strengths of these groups were not increased compared to the smear layer removed/no dentin treatment group.

  • PDF

Shear bond strength of indirect composite material to monolithic zirconia

  • Sari, Fatih;Secilmis, Asli;Simsek, Irfan;Ozsevik, Semih
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.267-274
    • /
    • 2016
  • PURPOSE. This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS. Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (${\alpha}$=.05). RESULTS. Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION. Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

A Study on the Effect of Non-martensitic Layer on the Fatigue Strength in Carburized Gears (첨탄기어의 피로강도에 미치는 표면이상층의 영향에 관한 연구)

  • 류성기;박준철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.357-364
    • /
    • 2001
  • This study deals with the effect on non-martensitic layer on the fatigue strength in carburized gear. The test gears are carburized, then treated by the combination of chemical polishing and electro-polishing. Carburization treatment is used widely on parts of power transmission system like surface hardened layer to improve fatigue strength. Carburized gears are observed using a scanning electron microscope(SEM) to determine the characteristics of crack initiation mechanism in the surface layer. The constant street amplitude fatigue test is performed by using and electro-hydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. The effect of non-martensitic layer on the fatigue strength is clarified.

  • PDF

The effect of deposition conditions on the adhesion strength of TiN multilayer by D. C. magnetron sputtering (D. C. 마그네트론 스퍼터링에 의한 증착조건이 TiN다층박막의 밀착력에 미치는 영향)

  • 김선규;유정광;이건환;권식철
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.4
    • /
    • pp.261-267
    • /
    • 1996
  • The characteristics and adhesion strength of TiN layer deposited by D. C. magnetron sputtering were investigated. Three types of TiN layers were deposited on STS304 stainless steel. Scratch tests were performed to determine the effect of deposition temperature, the thickness of coated TiN layer and the titanium inter-layer on the adhesion strength. TiN multilayer with titanium inter-layer showed the highest critical load in the deposition temperature range of $25^{\circ}C$ to $300^{\circ}C$. Adhesion strength of TiN multilayer with titanium inter-layer was raised from 15N to 20N by raising deposition temperature from $25^{\circ}C$ to $400^{\circ}C$. Adhesion strength was raised from 18N to 38N by increasing the thickness of outer layer of TiN multilayer from 2.1 $\mu\textrm{m}$ to 9.5 $\mu\textrm{m}$.

  • PDF

A study on the mechanical properties of TiN/DLC based functionally graded coatings

  • Song, Young-Sik;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.59-59
    • /
    • 2003
  • In recent, various functional coatings on artificial tooth implants have been conducted to enhance the bonding strength between implants and bones. Despite of these efforts, some previous reports argued that an adhesion strength between titanium implant and the final coatings like hydroxyapatite(HA) is weaker than the strength between coating and bone. In order to increase the adhesion force between the final coating and implant surface, TiN/DLC based functionally graded coating, which has higher mechanical strength than the titanium implant, was applied as a middle layer between titanium implant and final coating. Particularly we finally coated a biocompatible hydroxyapatite film on the DLC layer and examined the mechanical properties. As a result, TiN/DLC based functionally graded coating showed the higher adhesion strength compared with hydroxyapatite single layer coating on the titanium implant.

  • PDF