• Title/Summary/Keyword: Surface interpolation

Search Result 351, Processing Time 0.036 seconds

Construction of curve-net interpolation surface considering trajectory of cross-section curves (단면곡선의 궤적을 고려한 곡선망 보간곡면 형성)

  • Yoo, Woo-Sik;Shin, Ha-Yong;Choi, Byoung-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.2
    • /
    • pp.77-90
    • /
    • 1994
  • Curve-net interpolation surface is one of the most popular method in engineering design. Therefore it is supported with many commercial CAD/CAM system. However, construction algorithm of curve-net interpolation surfaces is rarely opened to the public because of its copy-right. In this paper we establish a construction algorithm of curve-net interpolation surface so called sweeping surface which especially concentrates on trajectory of cross-section curve. We also show the method which can construct sweeping surfaces as NURB or Bezier mathematical models. Surfaces having the form of standard mathematical models are very useful for the application of joining, trimming, blending etc. The proposed surface interpolation scheme consists of four steps; (1) preparation of guide curves and section curves, (2) remeshing guide curves and section curves, (3) blending section curves after deformation, and (4) determination of control points for sweeping surface using gordon method. The proposed method guarantee $G^1$-continuety, and construct the surface salifying given section curves and trajectory of section curves.

  • PDF

A New Method of the Global Interpolation in NURBS Surface: II (NURBS Surface Global Interpolation에 대한 한 방법: II)

  • 정형배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

A New Method of the Global Interpolation in NURBS Surface (NURBS Surface Global Interpolation에 대한 한 방법)

  • 정형배;나승수;박종환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.237-243
    • /
    • 1997
  • A new method is introduced for the interpolation in NURBS Surface. This method uses the basis functions to assign the parameter values to the arbitrary set of geometric data and uses the iteration method to compute the control net. The advantages of this method are the feasible transformation of the data set to the matrix form and the effective surface generation as a result, especially to the design engineer.

  • PDF

Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning (온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

Application of Curve Interpolation Algorithm in CAD/CAM to Remove the Blurring of Magnified Image

  • Lee Yong-Joong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.115-124
    • /
    • 2005
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the problems. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the problems. As a result. the nearest neighbor interpolation. which is the most frequently applied algorithm for the existing image interpolation algorithm. shows that the identification of a magnified image is not possible. Therefore. this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson's curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter. this study will develop an interpolation algorithm that has an excel lent improvement for the boundary of the image and continuous and flexible property by using the NURBS. Ferguson's complex surface. and Bezier surface used in CAD/CAM engineering based on. the results of this study.

  • PDF

A Study on the Interpolation Algorithm to Improve the Blurring of Magnified Image (확대 영상의 몽롱화 현상을 제거하기 위한 보간 알고리즘 연구)

  • Lee, Jun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.562-569
    • /
    • 2010
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the blurring of magnified image. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the blurring of magnified image. As a result, the nearest neighbor interpolation, which is the most frequently applied algorithm for the existing image interpolation algorithm, shows that the identification of a magnified image is not possible. Therefore, this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson' curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter, this study will develop an interpolation algorithm that has an excellent improvement for the boundary of the image and continuous and flexible property by using the NURBS, Ferguson' complex surface, and Bezier surface used in CAD/CAM engineering based on the results of this study.

Inlet Surface Blending using NURBS Skinning (NURBS Skinning을 이용한 Inlet Surface 합성)

  • Choi, Gun-Il
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.181-185
    • /
    • 2002
  • The modeling of realistic water-jet geometry is needed in order to facilitate the design modifications. The present paper proposes a method of generating inlet geometry. Inlet duct was represented by NURBS method which utilized the skinning and local cubic interpolation scheme. Three test examples are presented demonstrating the effectiveness of the methods of skinning and local cubic interpolation. Computational examples associated with practical configurations have shown the usefulness of the present method.

  • PDF

INTERPOLATION OF SURFACES WITH GEODESICS

  • Lee, Hyun Chol;Lee, Jae Won;Yoon, Dae Won
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.957-971
    • /
    • 2020
  • In this paper, we introduce a new method to construct a parametric surface in terms of curves and points lying on Euclidean 3-space, called a C0-Hermite surface interpolation. We also prove the existence of a C0-Hermite interpolation of isoparametric surfaces with the so-called marching scale functions, and give some examples. Finally, we construct ruled surfaces and surfaces foliated by a circle as an isoparametric surface.

An Improvement of Strain Measuring Technique by using the B-spline Surface Interpolation Method (3차원 곡면 내삽법을 이용한 자동차 박판 부품의 변형율 측정법 개선)

  • 김종봉;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.141-150
    • /
    • 1998
  • The measurement of strains in stamped sheet metal is essential to the design and manufacture of sound sheet metal products. The measured strains can also be used in verifying the reliability of the computer analysis such as finite element analysis. In most engineering applications, strains are measured from the deformed square grids or deformed circular grids in comparison with the initial undeformed grids. In such a case, however, strains are averaged in each grid and the localized strain in a region smaller than a grid size can not be measured. In the present study, the B-spline surface interpolation technique is introduced in order to measure the strains more exactly and effectively. The strains calculated by using the surface interpolation technique are compared with the strains calculated from the three-noded grids as well as with the finite element analysis.

  • PDF